Lớp 7

Toán 7 Bài 32: Quan hệ giữa đường vuông góc và đường xiên

Giải bài tập SGK Toán 7 Tập 2 trang 63, 64, 65 sách Kết nối tri thức với cuộc sống giúp các em học sinh lớp 7 xem gợi ý giải các bài tập của Bài 32: Quan hệ giữa đường vuông góc và đường xiên.

Thông qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 32 Chương IX – Quan hệ giữa các yếu tố trong một tam giác trong sách giáo khoa Toán 7 Tập 2 Kết nối tri thức với cuộc sống. Đồng thời, cũng giúp thầy cô tham khảo để soạn giáo án cho học sinh của mình theo chương trình mới. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của THPT Nguyễn Đình Chiểu nhé:

Bạn đang xem: Toán 7 Bài 32: Quan hệ giữa đường vuông góc và đường xiên

Giải Toán 7 Kết nối tri thức với cuộc sống trang 65 tập 2

Bài 9.6

Chiều cao của tam giác ứng với một cạnh của nó có phải khoảng cách từ đỉnh đối diện đến đường thẳng chứa cạnh đó không?

Gợi ý đáp án:

Bài 9.6

Dựa theo hình thì AH chính là chiều cao của tam giác ABC. AH ⊥ BC và AH là đoạn ngắn nhất so với AB và AC nên AH chính là khoảng cách từ a đến đoạn thẳng BC.

Bài 9.7

Cho hình vuông ABCD. Hỏi trong 4 đỉnh của hình vuông

a) Đỉnh nào cách đều hai điểm A và C

b) Đỉnh nào cách đều hai đường thẳng AB và AD

Gợi ý đáp án:

Bài 9.6

a) Đỉnh B và đỉnh D

b) Đỉnh C

Bài 9.8

Cho tam giác cân ABc, AB=AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.12)

Bài 9.6

a) Khi M thay đổi thì độ dài AM thay đổi. Xác định vị trí của điểm M đê độ dài AM nhỏ nhất

b) Chứng minh răng với mọi điểm M thì AM

Gợi ý đáp án:

a)

Bài 9.6

Gọi M1 là trung điểm của cạnh đáy BC. Suy ra AM1 ⊥ BC. AM1 chính là khoảng cách từ A đến BC

Theo định lí về đường xiên và đường vuông góc thì AM1 chính là đường ngắn nhất trong tam giác ABC

Vậy nếu M là trung điểm của BC thì AM sẽ có độ dài nhỏ nhất

b) Khi M nằm giữa C và B

Nếu BM < MC thì ta sẽ được góc tù widehat{AMB}. Theo định lý về góc và cạnh đối diện, AB sẽ lớn hơn AM

Tương tự khi BM>MC. ta sẽ được góc tù widehat{AMC}. Theo định lý về góc và cạnh đối diện, AC sẽ lớn hơn AM

Mà AB=AC. Suy ra, bất cứ điểm nào nằm giữa B và C, AM luôn bé hơn AB.

Bài 9.9

Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC ( M,N không phải là đỉnh của tam giác). (H.9.13). Chứng minh rằng MN < BC. Gợi ý, so sánh MN với NB, NB với BC).

Bài 9.6

Gợi ý đáp án:

Nối N với B

NA là đường vuông góc từ điểm N xuống đoạn AN và AB

NB là đường xiên, AB là hình chiếu của NB. NM là hình xiên, AM là hình chiếu của NM

AM < AB=> NM < NB

Tương tự, AC là hình chiếu của đường xiên BC, AN là hình chiếu của đường xiên NB

AN< AC=> NB

Từ đó ta thấy NM

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 7

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!