Lớp 3

Toán Tiểu học: Công thức tính diện tích, chu vi, thể tích hình cơ bản

Toán Tiểu học: Công thức tính diện tích, chu vi, thể tích hình cơ bản giúp các em học sinh tham khảo, hệ thống hóa kiến thức về tính diện tích, tính chu vi, thể tích hình trụ, hình tam giác, hình vuông, hình chữ nhật, hình tròn, hình thoi, hình nón, hình cầu..

Nhờ đó, sẽ biết cách vận dụng vào bài tập tốt hơn, để ngày càng học tốt môn Toán. Vậy mời các em cùng theo dõi nội dung chi tiết trong bài viết dưới đây của Download.vn:

Bạn đang xem: Toán Tiểu học: Công thức tính diện tích, chu vi, thể tích hình cơ bản

1. Tính chu vi, diện tích Hình chữ nhật

Hình chữ nhật

Công thức tính chu vi Hình chữ nhật

Công thức: P = (a + b) x 2.

Muốn tính chu vi hình chữ nhật, ta lấy chiều dài cộng chiều rộng nhân với 2 (cùng một đơn vị đo).

Mở rộng: Biết chu vi tính cạnh bằng cách lấy nửa chu vi (P : 2) trừ cạnh đã biết.

Công thức tính diện tích Hình chữ nhật

Công thức: S = a x b.

Muốn tính diện tích hình chữ nhật, ta lấy chiều dài nhân với chiều rộng (cùng một đơn vị đo).

Mở rộng: Biết DT tìm cạnh bằng cách lấy DT chia cạnh đã biết.

2. Tính chu vi, diện tích Hình vuông

Hình vuông

Công thức tính chu vi Hình vuông

Công thức: P = a x 4

Muốn tính chu vi hình vuông, ta lấy độ dài một cạnh nhân với 4.

Mở rộng: Nếu biết chu vi hình vuông, để tìm cạnh hình vuông ta lấy chu vi hình vuông chia 4.

Công thức tính diện tích Hình vuông

Công thức: S = a x a.

Muốn tính diện tích hình vuông, ta lấy độ dài một cạnh nhân với chính nó.

Mở rộng: Nếu biết diện tích hình vuông, ta có thể tìm cạnh hình vuông bằng cách nhẩm.

3. Tính chu vi, diện tích Hình bình hành

Hình bình hành

Công thức tính chu vi Hình bình hành

Công thức: P = (a + b) x 2

Muốn tính chu vi hình bình hành, ta lấy tổng hai cạnh kề nhân với 2 (cùng một đơn vị đo).

Mở rộng: Biết chu vi tính cạnh bằng cách lấy nửa chu vi (P : 2) trừ cạnh đã biết.

Công thức tính diện tích Hình bình hành

Công thức: S = a x h

Muốn tính diện tích hình bình hành, ta lấy độ dài đáy nhân với chiều cao (cùng một đơn vị đo).

Mở rộng: Biết diện tích hình bình hành, ta có thể tính:

  • Độ dài đáy: a = S : h
  • Chiều cao: h = S : a

4. Tính chu vi, diện tích Hình thoi

Hình thoi

Công thức tính chu vi Hình thoi

Công thức: P = a x 4

Muốn tính chu vi hình thoi, ta lấy độ dài cạnh hình thoi nhân với 4.

Mở rộng: Nếu biết chu vi hình thoi, để tìm cạnh hình thoi ta lấy chu vi chia 4.

Công thức tính diện tích Hình thoi

Công thức: S = frac{m times n}{2}

Muốn tính diện tích hình thoi, ta lấy tích độ dài hai đường chéo chia cho 2 (cùng một đơn vị đo).

5. Tính chu vi, diện tích Hình tam giác

Hình tam giác

Công thức tính chu vi Hình tam giác

Công thức: C = a + b + c

Muốn tính chu vi hình tam giác, ta lấy độ dài 3 cạnh tam giác cộng lại với nhau (cùng một đơn vị đo).

Mở rộng: Nếu biết chu vi hình tam giác và 2 cạnh, ta tìm cạnh còn lại bằng cách lấy chu vi trừ đi tổng 2 cạnh còn lại: a = C – (b+c).

Công thức tính diện tích Hình tam giác

Công thức: S = frac{a times h}{2}

Muốn tính diện tích hình tam giác, ta lấy độ dài đáy nhân với chiều cao rồi chia cho 2 (cùng một đơn vị đo).

Mở rộng: Nếu ta biết diện tích hình tam giác, ta có thể tính:

  • Chiều cao: h = (S x 2) : a
  • Cạnh đáy: a = (S x 2) : h

6. Tính chu vi, diện tích Hình thang

Hình thang

Công thức tính chu vi hình thang

Công thức: C = a + b + c + d

Muốn tính chu vi hình thang, ta lấy độ dài các cạnh hình thang cộng lại với nhau (cùng một đơn vị đo).

Mở rộng: Nếu biết chu vi hình thang và độ dài 3 cạnh, ta có thể tìm cạnh còn lại bằng cách lấy chu vi trừ đi tổng độ dài 3 cạnh: a = C – (b + c + d).

Công thức tính diện tích hình thang

Công thức: S = frac{left(a + bright) times h}{2}

Muốn tính diện tích hình thang, ta lấy tổng độ dài hai đáy nhân với chiều cao rồi đem chia cho 2 (cùng một đơn vị đo).

Mở rộng: Nếu biết diện tích hình thang, ta có thể tính

  • Chiều cao: h = (S x 2) : a
  • Cạnh đáy: a = (S x 2) : h

7. Tính chu vi, diện tích hình tròn

Hình tròn

Công thức tính chu vi hình tròn

Công thức: C = d x 3,14
hoặc r x 2 x 3,14

Muốn tính chu vi hình tròn, ta lấy đường kính nhân với số 3,14 (hoặc lấy bán kính nhân 2 rồi nhân với 3,14).

Mở rộng: Nếu biết chu vi hình tròn, ta có thể tính:

  • Đường kính: d = C : 3,14
  • Bán kính: r = C : 3,14 : 2

Công thức tính diện tích hình tròn

Công thức: r x r x 3,14

Muốn tính diện tích hình tròn, ta lấy bán kinh nhân với bán kính rồi nhân với số 3,14.

8. Tính diện tích, thể tích hình lập phương

Hình lập phương

Tính diện tích xung quanh hình lập phương

Công thức: Sxq = Sm x 4

Muốn tính diện tích xung quanh, ta lấy diện tích 1 mặt của hình lập phương nhân với 4.

Tính diện tích toàn phần hình lập phương

Công thức: Stp = Sm x 6

Muốn tính diện tích xung quanh, ta lấy diện tích 1 mặt của hình lập phương nhân với 6.

Tính thể tích hình lập phương

Công thức: V = a x a x a

Muốn tính thể tích hình lập phương, ta lấy cạnh nhân với cạnh rồi nhân với cạnh.

9. Tính diện tích, thể tích hình hộp chữ nhật

Hình hộp chữ nhật

Tính diện tích xung quanh hình hộp chữ nhật

Công thức: Sxq = P x c

Muốn tính diện tích xung quanh của hình hộp chữ nhật, ta lấy chu vi mặt đáy nhân với chiều cao (cùng một đơn vị đo).

Tính diện tích toàn phần hình hộp chữ nhật

Công thức: Stp = Sxq + Sđ x 2

Muốn tính diện tích toàn phần của hình hộp chữ nhật, ta lấy diện tích xung quanh của hình hộp chữ nhật cộng với 2 lần diện tích đáy (cùng một đơn vị đo).

Tính thể tích hình hộp chữ nhật

Công thức: V = a x b x c

Muốn tính thể tích của hình hộp chữ nhật, ta lấy chiều rài nhân với chiều rộng rồi nhân với chiều cao (cùng một đơn vị đo).

10. Tính diện tích, thể tích hình nón

Công thức tính diện tích xung quanh hình nón

Diện tích xung quanh hình nón được xác định bằng tích của hằng số Pi (π) nhân với bán kính đáy hình nón (r) nhân với đường sinh hình nón (l). Đường sinh có thể là một đường thẳng hoặc 1 đường cong phẳng. Với hình nón thì đường sinh có chiều dài từ mép của vòng tròn đến đỉnh của hình nón.

Sxq=pi.r.l

Trong đó:

  • Sxq: là ký hiệu diện tích xung quanh hình nón.
  • π: là hằng số Pi có giá trị xấp xỉ là 3,14
  • r: Bán kính mặt đáy hình nón và bằng đường kính chia 2 (r = d/2).
  • l: đường sinh của hình nón.

Công thức tính diện tích toàn phần hình nón

Diện tích toàn phần hình nón bằng diện tích xung quanh hình nón cộng với diện tích mặt đáy hình nón. Vì diện tích mặt đáy là hình tròn nên áp dụng công thức tính diện tích hình tròn là Sđ = π.r.r.

Stp=Sxq+Sd=pi.r.l+pi.r^2

Công thức tính thể tích hình nón

Để tính được thể tích hình nón ta áp dụng công thức sau:

V=frac{1}{3}pi.r^2.h

Trong đó:

  • V: Ký hiệu thể tích hình nón
  • π: là hằng số = 3,14
  • r: Bán kính hình tròn đáy.
  • h: là đường cao hạ từ đỉnh xuống tâm đường tròn đáy.

11. Tính diện tích, thể tích hình trụ

Công thức tính diện tích xung quanh hình trụ

S (xung quanh) = 2 x π x r x h

Trong đó:

  • r: bán kính hình trụ
  • h: chiều cao nối từ đáy tới đỉnh hình trụ
  • π = 3,14

Công thức tính diện tích toàn phần hình trụ

S (toàn phần) = 2 x π x r2 + 2 x π x r x h = 2 π x r x (r + h)

Trong đó:

  • r: bán kính hình trụ
  • 2 x π x r x h: diện tích xung quanh hình trụ
  • 2 x π x r2: diện tích của hai đáy

Công thức tính thể tích hình trụ

V = π x r2 x h

Trong đó:

  • r: bán kính hình trụ
  • h: chiều cao hình trụ

12. Tính chu vi, diện tích Hình cầu

Công thức tính diện tích mặt cầu

Công thức tính diện tích mặt cầu

Công thức tính thể tích hình cầu

Công thức tính thể tích hình cầu

Trong đó:

  • S là diện tích mặt cầu
  • V là thể tích hình cầu
  • r là bán kính mặt cầu/hình cầu
  • d là bánh kính mặt cầu/hình cầu

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 3

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!