Lớp 7

Toán 7 Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song

Giải bài tập SGK Toán 7 Tập 1 trang 51, 52, 53, 54 sách Kết nối tri thức với cuộc sống giúp các em học sinh lớp 7 xem gợi ý giải các bài tập của Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song.

Thông qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 10 Chương III – Góc và đường thẳng song song trong sách giáo khoa Toán 7 Tập 1 Kết nối tri thức với cuộc sống. Đồng thời, cũng giúp thầy cô tham khảo để soạn giáo án cho học sinh của mình theo chương trình mới. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn:

Bạn đang xem: Toán 7 Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song

Giải Toán 7 Kết nối tri thức với cuộc sống trang 53, 54 tập 1

Bài 3.17

Cho hình 3.39, biết rằng mn // pq. Tính số đo góc mHK, vHn.

Hình 3.39

Gợi ý đáp án:

Theo bài ra ta có: mn // pq

=> widehat {mHK} = widehat {HKq} = {70^0} (hai góc ở vị trí so le trong)

Vậy widehat {mHK} = {70^0}

Ta lại có mn // pq

=> widehat {vHn} = widehat {HKq} = {70^0} (hai góc ở vị trí đồng vị)

Vậy widehat {vHn} = {70^0}

Bài 3.18

Cho hình 3.40:

Hình 3.40

a) Giải thích tại sao Am // By.

b) Tính số đo góc CDm.

Gợi ý đáp án:

a) Quan sát hình vẽ:

Ta có: widehat {xBA} = widehat {BAD} = {70^0}

Mà hai góc nằm ở vị trí so le trong.

=> Am // By (dấu hiệu hai đường thẳng song song)

b) Ta có: Am // By (Chứng minh câu a)

=> widehat {tCy} = widehat {CDm} = {120^0} (hai góc ở vị trí đồng vị)

Vậy widehat {CDm} = {120^0}

Bài 3.19

Cho hình 3.41:

Hình 3.41

a) Giải thích tại sao xx’ // yy’.

b) Tính số đo góc MNB.

Gợi ý đáp án:

a) Quan sát hình vẽ:

Ta có: widehat {t'Ax'} = widehat {ABy'} = {65^0}

Mà hai góc nằm ở vị trí đồng vị.

=> xx’ // yy’ (dấu hiệu hai đường thẳng song song)

b) Ta có: xx’ // yy’ (Chứng minh câu a)

=> widehat {x'MN} = widehat {MNB} = {70^0} (hai góc ở vị trí so le trong)

Vậy widehat {MNB} = {70^0}

Bài 3.20

Cho hình 3.42, biết rằng Ax // Dy, widehat A = {90^0};widehat {BCy} = {50^0}. Tính số đo các góc ADC và ABC.

Hình 3.42

Gợi ý đáp án:

Theo bài ra ta có: Ax // By

Ta lại có: widehat A = {90^0}

=> widehat A = widehat {ADC} = {90^0} (Hai góc ở vị trí đồng vị)

Ta có: Ax // By

=> widehat {ABC} = widehat {BCy} = {50^0} (Hai góc ở vị trí so le trong)

Vậy widehat {ADC} = {90^0};widehat {ABC} = {50^0}

Bài 3.21

Cho hình 3.43. Giải thích tại sao:

Hình 3.43

a) Ax’ // By

b) By ⊥ HK

Gợi ý đáp án:

Quan sát hình vẽ

a) Ta có: widehat {xAB} = widehat {ABK} = {45^0}

Mà hai góc nằm ở vị trí so le trong

=> Ax’ // By (Dấu hiệu nhận biết hai đường thẳng song song)

b) Ta có: Ax’ // By (chứng minh câu a)

Ta lại có: widehat {AHK} = {90^0}

Rightarrow widehat {AHK} = widehat {HKB} = {90^0} (Hai góc đồng vị bằng nhau)

=> By ⊥ HK

Bài 3.22

Cho tam giác ABC. Vẽ đường thẳng a đi qua A và song song với BC. Vẽ đường thẳng b đi qua B và song song với AC. Có thể vẽ được bao nhiêu đường thẳng a, bao nhiêu đường thẳng b? Vì sao?

Gợi ý đáp án:

Bài 3.22

Theo Tiên đề Euclid:

+) Qua điểm A nằm ngoài đường thẳng BC, chỉ có một đường thẳng song song với đường thẳng BC. Đường thẳng đó là a

+) Qua điểm B nằm ngoài đường thẳng AC, chỉ có một đường thẳng song song với đường thẳng BC. Đường thẳng đó là b

Như vậy, có thể vẽ được 1 đường thẳng a, 1 đường thẳng b.

Bài 3.23

Cho hình 3.44:

Hình 3.44:

Giải thích tại sao:

a) MN // EF;

b) HK // EF;

c) HK // MN.

Gợi ý đáp án:

Quan sát hình vẽ ta có:

a) Ta có:

widehat {MNE} = widehat {NEF} = {30^0}

Mặt khác hai góc ở vị trí so le trong

=> MN // EF (Dấu hiệu nhận biết hai đường thẳng song song)

b) Ta có: widehat {DKH} = widehat {DFE} = {60^0}

Mặt khác hai góc ở vị trí đồng vị

=> HK // EF (Dấu hiệu nhận biết hai đường thẳng song song)

c) Ta có: MN // EF (chứng minh câu a)

HK // EF (chứng minh câu b)

=> HK // MN (tính chất bắc cầu)

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 7

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!