Lớp 10

Toán 10 Bài 3: Dấu của tam thức bậc hai

Giải Toán 10 Bài 3: Dấu của tam thức bậc hai sách Cánh diều là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 48.

Giải SGK Toán 10 Bài 3 trang 48 tập 1 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân.

Bạn đang xem: Toán 10 Bài 3: Dấu của tam thức bậc hai

Giải Toán 10 trang 48 Cánh diều – Tập 1

Bài 1 trang 48

Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) 0″ width=”128″ height=”20″ data-type=”0″ data-latex=”{x^2} – 2x – 3 > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=%7Bx%5E2%7D%20-%202x%20-%203%20%3E%200″> khi và chỉ khi x in left( { - infty ; - 1} right) cup left( {3; + infty } right)

b) <img alt="{x^2} – 2x – 3 < 0" width="128" height="20" data-type="0" data-latex="{x^2} – 2x – 3 khi và chỉ khi x in left[ { - 1;3} right]

Gợi ý đáp án

a) Phương trình {x^2} - 2x - 3 = 0 có 2 nghiệm phân biệt {x_1} = - 1,{x_2} = 3

Có a = 1 > 0 nên 0″ width=”191″ height=”24″ data-type=”0″ data-latex=”fleft( x right) = {x^2} – 2x – 3 > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=f%5Cleft(%20x%20%5Cright)%20%3D%20%7Bx%5E2%7D%20-%202x%20-%203%20%3E%200″> khi và chỉ khix in left( { - infty ; - 1} right) cup left( {3; + infty } right)

=> Phát biểu đúng.

b) Phương trình {x^2} - 2x - 3 = 0 có 2 nghiệm phân biệt{x_1} = - 1,{x_2} = 3

Có a = 1 > 0 nên <img alt="fleft( x right) = {x^2} – 2x – 3 < 0" width="191" height="24" data-type="0" data-latex="fleft( x right) = {x^2} – 2x – 3 khi và chỉ khi x in left( { - 1;3} right)

=> Phát biểu sai.

Bài 2 trang 48

Tìm nghiệm và lập bảng xét dấu của tam thức bậc hai fleft( x right) với đồ thị được cho ở mỗi Hình 224a, 24b, 24c.

Gợi ý đáp án

Hình 24a:

Ta thấy đồ thị cắt trục Ox tại điểm (2;0)

=> Phương trình fleft( x right) = 0có nghiệm duy nhất x = 2

Ta thấy đồ thị nằm trên trục hoành nên có bảng xét dấu:

Hình 24b:

Ta thấy đồ thị cắt trục Ox tại 2 điểm phân biệt (-4;0) và (-1;0)

=> Phương trình fleft( x right) = 0 có 2 nghiệm phân biệt x = – 4,x = – 1

Trong các khoảng left( { - infty ; - 4} right)left( { - 1; + infty } right) thì đồ thị nằm dưới trục hoành nên<img alt="fleft( x right) < 0" width="73" height="22" data-type="0" data-latex="fleft( x right)

Trong khoảng left( { - 4; - 1} right) thì đồ thị nằm trên trục hoành nên 0″ width=”73″ height=”22″ data-type=”0″ data-latex=”fleft( x right) > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=f%5Cleft(%20x%20%5Cright)%20%3E%200″>

Bảng xét dấu:

Ta thấy đồ thị cắt trục Ox tại 2 điểm phân biệt (-1;0) và (2;0)

=> Phương trình fleft( x right) = 0 có 2 nghiệm phân biệt x = – 1,x = 2

Trong các khoảng left( { - infty ; - 1} right) và left( {2; + infty } right) thì đồ thị nằm trên trục hoành nên 0″ width=”73″ height=”22″ data-type=”0″ data-latex=”fleft( x right) > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=f%5Cleft(%20x%20%5Cright)%20%3E%200″>

Trong khoảng left( { - 1;2} right) thì đồ thị nằm dưới trục hoành nên <img alt="fleft( x right) < 0" width="73" height="22" data-type="0" data-latex="fleft( x right)

Bảng xét dấu:

Bài 3 trang 48

Xét dấu của mỗi tam thức bậc hai sau:

a) fleft( x right) = 3{x^2} - 4x + 1

c) fleft( x right) = 2{x^2} - 3x + 10

d) fleft( x right) = - 5{x^2} + 2x + 3

e) fleft( x right) = - 4{x^2} + 8x - 4

g) fleft( x right) = - 3{x^2} + 3x - 1

Gợi ý đáp án

a) Ta có a = 3 > 0,b = – 4,c = 1

0″ width=”207″ height=”26″ data-type=”0″ data-latex=”Delta ‘ = {left( { – 2} right)^2} – 3.1 = 1 > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=%5CDelta%20’%20%3D%20%7B%5Cleft(%20%7B%20-%202%7D%20%5Cright)%5E2%7D%20-%203.1%20%3D%201%20%3E%200″>

Rightarrow fleft( x right) có 2 nghiệm x = frac{1}{3},x = 1. Khi đó:

0″ width=”73″ height=”22″ data-type=”0″ data-latex=”fleft( x right) > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=f%5Cleft(%20x%20%5Cright)%20%3E%200″> với mọi x thuộc các khoảng left( { - infty ;frac{1}{3}} right) và left( {1; + infty } right);

<img alt="fleft( x right) < 0" width="73" height="22" data-type="0" data-latex="fleft( x right) với mọi x thuộc các khoảng left( {frac{1}{3};1} right)

b) Ta có a = 9 > 0,b = 6,c = 1

Delta ' = 0

Rightarrow fleft( x right) có 1 nghiệm x = - frac{1}{3}. Khi đó:

0 với mọi x in mathbb{R}backslash left{ { – frac{1}{3}} right}” width=”244″ height=”48″ data-type=”0″ data-latex=”fleft( x right) > 0 với mọi x in mathbb{R}backslash left{ { – frac{1}{3}} right}” class=”lazy” data-src=”https://tex.vdoc.vn?tex=f%5Cleft(%20x%20%5Cright)%20%3E%200%20v%E1%BB%9Bi%20m%E1%BB%8Di%20x%20%5Cin%20%5Cmathbb%7BR%7D%5Cbackslash%20%5Cleft%5C%7B%20%7B%20-%20%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cright%5C%7D”>

c) Ta có a = 2 > 0,b = – 3,c = 10

<img alt="Delta = {left( { – 3} right)^2} – 4.2.10 = – 71 < 0" width="249" height="26" data-type="0" data-latex="Delta = {left( { – 3} right)^2} – 4.2.10 = – 71

0forall x in mathbb{R}” width=”153″ height=”22″ data-type=”0″ data-latex=”Rightarrow fleft( x right) > 0forall x in mathbb{R}” class=”lazy” data-src=”https://tex.vdoc.vn?tex=%5CRightarrow%20f%5Cleft(%20x%20%5Cright)%20%3E%200%5Cforall%20x%20%5Cin%20%5Cmathbb%7BR%7D”>

d) Ta có a = – 5 < 0,b = 2,c = 3

0″ width=”219″ height=”24″ data-type=”0″ data-latex=”Delta ‘ = {1^2} – left( { – 5} right).3 = 16 > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=%5CDelta%20’%20%3D%20%7B1%5E2%7D%20-%20%5Cleft(%20%7B%20-%205%7D%20%5Cright).3%20%3D%2016%20%3E%200″>

Rightarrow fleft( x right) có 2 nghiệm x = frac{{ - 3}}{5},x = 1. Khi đó:

<img alt="fleft( x right) < 0" width="73" height="22" data-type="0" data-latex="fleft( x right) với mọi x thuộc các khoảngleft( { - infty ; - frac{3}{5}} right) và left( {1; + infty } right);

0″ width=”73″ height=”22″ data-type=”0″ data-latex=”fleft( x right) > 0″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=f%5Cleft(%20x%20%5Cright)%20%3E%200″> với mọi x thuộc các khoảngleft( { - frac{3}{5};1} right)

e) Ta có a = – 4 < 0,b = 8c = – 4

Delta ' = 0

Rightarrow fleft( x right) có 1 nghiệm x = 2. Khi đó:

<img alt="fleft( x right) < 0" width="73" height="22" data-type="0" data-latex="fleft( x right) với mọi x in mathbb{R}backslash left{ 2 right}

g) Ta có a = – 3 < 0,b = 3,c = – 1

<img alt="Delta = {3^2} – 4.left( { – 3} right).left( { – 1} right) = – 3 < 0" width="269" height="24" data-type="0" data-latex="Delta = {3^2} – 4.left( { – 3} right).left( { – 1} right) = – 3

<img alt="Rightarrow fleft( x right) < 0forall x in mathbb{R}" width="153" height="22" data-type="0" data-latex="Rightarrow fleft( x right)

Bài 4 trang 48

Một công ty du lịch thông báo giá tiền cho chuyến đi tham quan của một nhóm khách du lịch như sau:

50 khách đầu tiên có giá là 300 000 đồng/người. Nếu có nhiều hơn 50 người đăng kí thì cứ có thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách.

a) Gọi x là số lượng khách từ người thứ 51 trở lên của nhóm. Biểu thị doanh thu theo x.

b) Số người của nhóm khách du lịch nhiều nhất là bao nhiêu thì công ty không bị lỗ? Biết rằng chi phí thực sự cho chuyến đi là 15 080 000 đồng.

Gợi ý đáp án

a)

Do x là số lượng khách thứ 51 trở lên nên x>0.

Cứ thêm 1 người thì giá còn (300000-5 000.1) đồng/người cho toàn bộ hành khách.

Thêm x người thì giá còn (300 000-5 000.x) đồng/người cho toàn bộ hành khách.

Doanh thu theo x:left( {50 + x} right).left( {300000 - 5000x} right) (VNĐ)

b) Do chi phí thực sự cho chuyến đi là 15 080 000 đồng nên để công ty không bị lỗ thì doanh thu phải lớn hơn hoặc bằng 15 080 000 đồng

Khi đó:

begin{array}{l}left( {50 + x} right).left( {300000 - 5000x} right) ge 15080000\ Leftrightarrow left( {50 + x} right).5000.left( {60 - x} right) ge 15080000\ Leftrightarrow left( {x + 50} right)left( {60 - x} right) ge 3016\ Leftrightarrow - {x^2} + 10x + 3000 ge 3016\ Leftrightarrow - {x^2} + 10x - 16 ge 0\ Leftrightarrow left( {x - 2} right)left( {8 - x} right) ge 0\ Leftrightarrow left( {x - 2} right)left( {x - 8} right) le 0\ Leftrightarrow 2 le x le 8end{array}

Vậy số người của nhóm du khách nhiều nhất là 58 người.

Bài 5 trang 48

Bộ phận nghiên cứu thị trường của một xí nghiệp xác định tổng chi phí để sản xuất

Q sản phẩm là {Q^2} + 180Q + 140000(nghìn đồng). Giả sử giá mỗi sản phẩm bán ra

thị trường là 1 200 nghìn đồng.

a) Xác định lợi nhuận xí nghiệp thu được sau khi bán hết Q sản phẩm đó, biết rằng lợi nhuận là hiệu của doanh thu trừ đi tổng chi phí để sản xuất.

b) Xí nghiệp sản xuất bao nhiều sản phẩm thì hoà vốn?

c) Xí nghiệp cần sản xuất số sản phẩm là bao nhiêu để không bị lỗ?

Gợi ý đáp án

a) Doanh thu khi bán hết Q sản phẩm là 1200Q (nghìn đồng)

Lợi nhuận bán hết Q sản phẩm là:

begin{array}{l}1200Q - left( {{Q^2} + 180Q + 140000} right)\ = - {Q^2} + 1020Q - 140000end{array}

b)

Để xí nghiệp hòa vốn thì: Lợi nhuận bằng 0.

begin{array}{l} Leftrightarrow - {Q^2} + 1020Q - 140000 = 0\ Leftrightarrow left[ begin{array}{l}Q approx 857\Q approx 163end{array} right.end{array}

Vậy xí nghiệp sản xuất 163 sản phẩm hoặc 857 sản phẩm thì hòa vốn.

c) Để không bị lỗ thì lợi nhuận lớn hơn hoặc bằng 0.

Khi đó:

begin{array}{l} - {Q^2} + 1020Q - 140000 ge 0\ Leftrightarrow 163,45 le Q le 857,55\ Rightarrow 164 le Q le 857end{array}

Vậy để không bị lỗ thì xí nghiệp cần sản xuất số sản phẩm nằm trong khoảng 164 đến 857.

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 10

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!