Lớp 10

Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Giải Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng – Góc và khoảng cách sách Kết nối tri thức với cuộc sống là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 41 tập 2.

Giải SGK Toán 10 Bài 20 trang 41 tập 2 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân. Vậy sau đây là giải Toán 10 bài Vị trí tương đối giữa hai đường thẳng – Góc và khoảng cách mời các bạn cùng đón đọc.

Bạn đang xem: Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Giải Toán 10 trang 41 Kết nối tri thức – Tập 2

Bài 7.7 trang 41

Xét vị trí tương đối giữa các cặp đường thẳng sau:

a.Delta _{1}:3sqrt{2}x+sqrt{2}y-sqrt{3}=0Delta _{2}: 6x+2y-sqrt{6}=0

b. d _{1}: x-sqrt{3}y+2=0 và d _{2}: sqrt{3}x-3y+2=0

c. m _{1}: x-2y+1=0 và m _{2}: 3x+y-2=0

Gợi ý đáp án

a. Delta _{1}có vecto pháp tuyển: overrightarrow{n_{1}}(3sqrt{2};sqrt{2})

Delta _{2} có vecto pháp tuyển: overrightarrow{n_{2}}(6; 2)

Ta có overrightarrow{n_{1}} và overrightarrow{n_{2}} cùng phương, nên Delta _{1}Delta _{2} song song hoặc trùng nhau.

Ta có:3sqrt{2}x+sqrt{2}y-sqrt{3}=0 Leftrightarrow 3sqrt{2}x+sqrt{2}y-sqrt{3}=0

Vậy Delta _{1}Delta _{2} trùng nhau.

b. Ta có:x-sqrt{3}y+2=0 Leftrightarrow sqrt{3}x-3y+2sqrt{3}=0

sqrt{3}x-3y+2sqrt{3} neq sqrt{3}x-3y+2 nên d _{1} và d _{2} song song.

c. m _{1} có vecto pháp tuyến: overrightarrow{n_{1}}(1;-2)

m _{2} có vecto pháp tuyến: overrightarrow{n_{2}}(3;1)

Ta có overrightarrow{n_{1}}overrightarrow{n_{2}} không cùng phương, nên d _{1}d _{2} cắt nhau.

Bài 7.8 trang 41

Tính góc giữa các cặp đường thẳng sau:

a. Delta _{1}:sqrt{3}x+y-4=0Delta _{2}: x+sqrt{3}y+3=0

b. d_{1}:left{begin{matrix}x=-1+2t\ y=3+4tend{matrix}right. và d_{2}:left{begin{matrix}x=3+s\ y=1-3send{matrix}right. (t, s là các tham số)

Gợi ý đáp án

a.

Delta _{1} có vecto pháp tuyến overrightarrow{n_{1}}(sqrt{3}; 1)

Delta _{2}có vecto pháp tuyến overrightarrow{n_{2}}(1; sqrt{3})

Gọi varphilà góc giữa hai đường thẳng Delta _{1} và Delta _{2}, ta có:

cosvarphi =left | cos(overrightarrow{n_{1}},overrightarrow{n_{2}})right |=frac{|sqrt{3}.1+1.sqrt{3}|}{sqrt{1^{2}+3}.sqrt{3+1^{2}}}=frac{sqrt{3}}{2}

Do đó góc giữa Delta _{1} và Delta _{2} là varphi =30^{o}.

b.

d _{1} có vecto chỉ phươngoverrightarrow{u_{1}}(2; 4)

d _{2} có vecto chỉ phương overrightarrow{u_{2}}(1; -3)

Gọi varphi là góc giữa hai đường thẳng d _{1}d _{2}, ta có:

cosvarphi =left | cos(overrightarrow{u_{1}},overrightarrow{u_{2}})right |=frac{|2.1-3.4|}{sqrt{2^{2}+1^{2}}.sqrt{4^{2}+3^{2}}}=frac{2sqrt{5}}{5}

Do đó góc giữa Delta _{1}Delta _{2}varphi approx 26,6^{o}.

Bài 7.9 trang 41

Trong mặt phẳng tọa độ Oxy, cho điểm A(-2; 0) và đường thẳngDelta : x + y - 4 = 0.

a. Tính khoảng cách từ điểm A đến đường thẳng Delta

b. Viết phương trình đường thẳng a đi qua điểm M(-1; 0) và song song với Delta .

c. Viết phương trình đường thẳng b đi qua điểm N(3; 0) và vuông góc với Delta .

Gợi ý đáp án

a. Khoảng cách từ điểm A đến đường thẳng Delta là: d_{(A;Delta )}=frac{|0-2+4|}{sqrt{1^{2}+1^{2}}}=sqrt{2}

b. đường thẳng a song song với Delta nên đường thẳng a có dạng: x + y + c = 0.

Do a đi qua M nên: -1 + 0 + c = 0, suy ra c = 1.

Vậy phương trình đường thẳng a: x + y + 1 = 0.

c. Đường thẳng b vuông góc với Delta nên đường thẳng b có vecto chỉ phương là vecto pháp tuyến của đường thẳng b:overrightarrow{u}(1; 1)

Phương trình tham số của đường thẳng b là:

left{begin{matrix}x=t\ y=3+tend{matrix}right.

Bài 7.10 trang 41

Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 0), B(3; 2) và C(-2; 1).

a. Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC.

b. Tính diện tích tam giác ABC.

Gợi ý đáp án

a.

Viết phương trình đường thẳng BC: có vecto chỉ phương là overrightarrow{BC}(-5;-3) và đi qua B(3; 2).

Rightarrow Đường thẳng BC có vecto pháp tuyến là: overrightarrow{n}(3; -5)

Phương trình đường thẳng BC là: 3(x – 3) – 5(y – 2) = 0, Hay 3x – 5y +1 = 0

Độ dài đường cao kẻ từ A của tam giác ABC chính là khoảng cách từ A đến đường thẳng BC.

Áp dụng công thức khoảng cách có:d_{(A; BC)}=frac{|3.1-5.0+1|}{sqrt{3^{2}+5^{2}}}=frac{2sqrt{34}}{17}

b.

Độ dài đoạn BC là: BC = sqrt{3^{2}+5^{2}}=sqrt{34}

Diện tích tam giác ABC là: S_{ABC}=frac{1}{2}d_{(A;BC)}.BC=frac{1}{2}.frac{2sqrt{34}}{17}.sqrt{34}=2

Bài 7.11 trang 41

Chứng minh rằng hai đường thẳng d: y = ax + b (a neq 0) và d’: y = a’x + b’ (a' neq 0) vuông góc với nhau khi và chỉ khi aa’ = -1.

Gợi ý đáp án

Giả sử đường thẳng d và d’ vuông góc với nhau, ta chứng minh aa’ = -1. Thật vậy,

Đường thẳng d có vecto pháp tuyến: overrightarrow{n}(a; -1)

Đường thẳng d’ có vecto pháp tuyến: overrightarrow{n'}(a'; -1)

Do đường thẳng d và d’ vuông góc với nhau nênoverrightarrow{n}.overrightarrow{n'}=0

Rightarrow a.a’ + (-1).(-1) = 0, hay a.a’ = -1.

Giả sử a.a’ = -1, ta chứng minh đường thẳng d và d’ vuông góc với nhau. Thật vậy,

Xét tích vô hướng: overrightarrow{n}.overrightarrow{n'}= a.a' + (-1).(-1) = -1 + 1 = 0

Rightarrow overrightarrow{n}perp overrightarrow{n'}

Vậy đường thẳng d và d’ vuông góc với nhau.

Bài 7.12 trang 41

Trong mặt phẳng tọa độ, một tín hiệu âm thanh phát đi từ một vị trí và được ba thiết bị ghi tín hiệu tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận được cùng một thời điểm. Hãy xác định vị trí phát tín hiệu âm thanh.

Gợi ý đáp án

Gọi điểm phát tín hiệu là I(x; y).

Do vị trí I đều được ba thiết bị ghi tín hiệu tại O, A, B nhận được cùng một thời điểm nên: IO = IA = IB.

Ta có: IO=sqrt{(x-0)^{2}+(y-0)^{2}},

IA= sqrt{(x-1)^{2}+(y-0)^{2}},

IB= sqrt{(x-1)^{2}+(y-3)^{2}}

Vì IO = IA = IB, nên ta có hệ phương trình:

left{begin{matrix}(x-0)^{2}+(y-0)^{2}=(x-1)^{2}+(y-0)^{2}\ (x-1)^{2}+(y-0)^{2}=(x-1)^{2}+(y-3)^{2}end{matrix}right.Leftrightarrow left{begin{matrix}-2x+1=0\ -6y +9 =0end{matrix}right.Leftrightarrow left{begin{matrix}x=frac{1}{2}\ y=frac{3}{2}end{matrix}right.

Vậy điểm cần tìm là I(frac{1}{2}; frac{3}{2})

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 10

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!