Lớp 10

Toán 10 Bài 18: Phương trình quy về phương trình bậc hai

Giải Toán 10 Bài 18: Phương trình quy về phương trình bậc hai sách Kết nối tri thức với cuộc sống là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 27 tập 2.

Giải SGK Toán 10 Bài 18 trang 27 tập 2 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân. Vậy sau đây là giải Toán 10 bài Phương trình quy về phương trình bậc hai, mời các bạn cùng đón đọc.

Bạn đang xem: Toán 10 Bài 18: Phương trình quy về phương trình bậc hai

Giải Toán 10 trang 27 Kết nối tri thức – Tập 2

Bài 6.20 trang 27

Giải các phương trình sau:

a. sqrt{3x^{2}-4x-1}=sqrt{2x^{2}-4x+3}

b. sqrt{x^{2}+2x-3}=sqrt{-2x^{2}+5}

c. sqrt{2x^{2}+3x-3}=sqrt{-x^{2}-x+1}

d. sqrt{-x^{2}+5x-4}=sqrt{-2x^{2}+4x+3}

Gợi ý đáp án

a. sqrt{3x^{2}-4x-1}=sqrt{2x^{2}-4x+3}

Bình phương hai vế của phương trình ta được:

Leftrightarrow x^{2}-4=0

Leftrightarrow x = 2 hoặc x = -2

Thử lại giá trị của x: đều thỏa mãn phương trình.

Vậy phương trình có nghiệm là x = 2 hoặc x = -2

b. sqrt{x^{2}+2x-3}=sqrt{-2x^{2}+5}

Bình phương hai vế của phương trình ta được:

x^{2}+2x-3=-2x^{2}+5

Leftrightarrow 3x^{2}+2x-8=0

Leftrightarrow x = -2 hoặc x= frac{4}{3}

Thử lại giá trị của x:

x = -2 không thỏa mãn phương trình,

x= frac{4}{3} thỏa mãn phương trình.

Vậy nghiệm của phương trình là x= frac{4}{3}.

c. sqrt{2x^{2}+3x-3}=sqrt{-x^{2}-x+1}

Bình phương hai vế của phương trình ta được:

2x^{2}+3x-3 = -x^{2}-x+1

Leftrightarrow 3x^{2}+4x-4=0

Leftrightarrow x = -2 hoặc x= frac{2}{3}

Thử lại giá trị của x:

x = -2 không thỏa mãn phương trình,

x= frac{2}{3} không thỏa mãn phương trình.

Vậy phương trình vô nghiệm.

d. sqrt{-x^{2}+5x-4}=sqrt{-2x^{2}+4x+3}

Bình phương hai vế của phương trình ta được:

-x^{2}+5x-4 = -2x^{2}+4x+3

Leftrightarrow x^{2}+x-6=0

Leftrightarrow x = 2 hoặc x= -3

Thử lại giá trị của x:

x = 2 thỏa mãn phương trình,

x = -3 không thỏa mãn phương trình.

Vậy phương trình có nghiệm x = 2

Bài 6.21 trang 27

Giải các phương trình sau:

a. sqrt{6x^{2}+13x+13}=2+4

b. sqrt{2x^{2}+5x+3}=-3-x

c. sqrt{3x^{2}-17x+23}=x-3

d. sqrt{-x^{2}+2x+4}=x-2

Gợi ý đáp án

a. sqrt{6x^{2}+13x+13}=2x+4

Bình phương hai vế của phương trình ta được:

6x^{2}+13x+13 = 4x^{2}+16x+16

Leftrightarrow 2x^{2}-3x-3 = 0

Leftrightarrow x=frac{3+sqrt{33}}{4} hoặc x=frac{3-sqrt{33}}{4}

Thử lại giá trị đều thỏa mãn.

Vậy phương trình có nghiệm x=frac{3+sqrt{33}}{4} hoặc x=frac{3-sqrt{33}}{4}

b. sqrt{2x^{2}+5x+3}=-3-x

Bình phương hai vế của phương trình ta được:

2x^{2}+5x+3 = 9+6x+x^{2}

Leftrightarrow x^{2}-x-6 = 0

Leftrightarrow x=3 hoặc x=-2

Thử lại giá trị đều không thỏa mãn.

Vậy phương trình vô nghiệm.

c. sqrt{3x^{2}-17x+23}=x-3

Bình phương hai vế của phương trình ta được:

3x^{2}-17x+23 = x^{2}-6x+9

Leftrightarrow 2x^{2}-11x+14 = 0

Leftrightarrow x=2 hoặc x=frac{7}{2}

Thử lại các giá trị:

  • x = 2 không thỏa mãn
  • x=frac{7}{2} thõa mãn.

Vậy phương trình có nghiệm x=frac{7}{2}

d. sqrt{-x^{2}+2x+4}=x-2

Bình phương hai vế của phương trình ta được:

-x^{2}+2x+4 = x^{2}-4x+4

Leftrightarrow -2x^{2}+6x= 0

Leftrightarrow x=0 hoặc x=3

Thử lại giá trị:

  • x = 0 không thỏa mãn
  • x = 3 thỏa mãn

Vậy phương trình có nghiệm là x = 3.

Bài 6.22 trang 27

Cho tứ giác ABCD có AB bot CD; AB = 2; BC = 13; CD = 8; DA = 5. Gọi H là giao điểm của AB và CD và đặt x = AH. Hãy thiết lập một phương trình để tính độ dài x, từ đó tính diện tích tứ giác ABCD.

Gợi ý đáp án

  • Xét tam giác AHD vuông tại H có: HD = sqrt{25-x^{2}} (áp dụng định lí Pytago).
  • Xét tam giác BHC vuông tại H có: HB^{2}+HC^{2}=BC^{2}

=> (x+2)^{2}+left ( sqrt{25-x^{2}} +8right )^{2}=13^{2}” width=”316″ height=”40″ data-type=”0″ data-latex=”=> (x+2)^{2}+left ( sqrt{25-x^{2}} +8right )^{2}=13^{2}” class=”lazy” data-src=”https://tex.vdoc.vn?tex=%3D%3E%20(x%2B2)%5E%7B2%7D%2B%5Cleft%20(%20%5Csqrt%7B25-x%5E%7B2%7D%7D%20%2B8%5Cright%20)%5E%7B2%7D%3D13%5E%7B2%7D”></p> <p><img loading=

Bình phương hai vế ta được:

16.(25-x^{2}) =361 - 38x +x^{2}

Leftrightarrow 17x^{2}-38x-39=0

Leftrightarrow x= 3 hoặc x= frac{-13}{17}

Thử lại phương trình và điều kiện x> 0, giá trị x= 3 thỏa mãn.

Vậy AH = x = 3.

  • Diện tích tam giác HAD là: S_{HAD}=frac{1}{2}AH.HD=6
  • Diện tích tam giác HBC là: S_{HAD}=frac{1}{2}HB.HC=36

Vậy diện tích tứ giác ABCD là: 36 – 6 = 30 (đơn vị diện tích).

Bài 6.23 trang 27

Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50 m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa điểm B, cách mình một đoạn 200 m thì Minh bắt đầu đi bộ ra lề đường để bắt kịp xe. Vận tốc đi bộ Minh là 5 km/h, vận tốc xe đạp của Hùng là 15 km/h. Hãy xác định vị trí C trên lề đường để hai bạn gặp nhau mà không bạn nào phải chờ người kia (làm tròn kết quả đến hàng phần mười).

Gợi ý đáp án

Đặt CH = x (x>0)

Ta có: AC=sqrt{x^{2}+50^{2}}=sqrt{x^{2}+2500}

BH = sqrt{200^{2}-50^{2}}=50sqrt{15}

BC = BH - CH = 50sqrt{15}-x

Vì hai bạn gặp nhau tại C, nên thời gian đi từ A đến C bằng thời gian đi từ B đến C, nên ta có phương trình:

frac{50sqrt{15}-x}{15}=frac{sqrt{x^{2}+2500}}{5}

Leftrightarrow 50sqrt{15}-x=3.sqrt{x^{2}+2500}

Bình phương hai vế được:

37500-100sqrt{15}.x+x^{2}=9.(x^{2}+2500)

Leftrightarrow xapprox 25,4 hoặc xapprox -73,8

Thử lại phương trình và điều kiện x>0 thì x = 25,4 thỏa mãn.

Vậy vị trí điểm C là cách H 1 khoảng 25,4 m.

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 10

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!