Lớp 7

Số hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ

Số hữu tỉ là tập hợp các số có thể viết được dưới dạng phân số. Tức là một số hữu tỉ có thể được biểu diễn bằng một số thập phân vô hạn tuần hoàn. Trong bài viết hôm nay THPT Nguyễn Đình Chiểu sẽ giới thiệu đến các bạn toàn bộ kiến thức về Số hữu tỉ.

Bài tập về số hữu tỉ bao gồm một số bài toán về các phép tính cộng, trừ, nhân, chia số hữu tỉ, lũy thừa với số mũ tự nhiên. Tài liệu giúp các bạn học sinh củng cố lại kiến thức, luyện tập nhằm ôn tập môn Toán lớp 7 hiệu quả. Sau đây là nội dung chi tiết tài liệu, mời các bạn cùng tham khảo.

Bạn đang xem: Số hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ

A. Lý thuyết Số hữu tỉ

1. Tập hợp các số hữu tỉ

– Số hữu tỉ là số viết được dưới dạng phân số frac{a}{b}với a,b mathrm{a}, mathrm{b} in mathbb{Z}, mathrm{b} neq 0

– Ta có thể biểu diễn mọi số thực hữu tỉ trên trục số. Trên trục số, điểm biểu diễn số hữu tỉ x được gọi là điểm x.

– Với hai số hữu tỉ bất kì x, y ta tuôn có hoặc hoặc hoặc

– Nếu thì trên trục số x ở bên trái điểm y

– Số hữu tỉ lớn hơn 0 được gọi là số hữu tỉ dương

– Số hữu tỉ nhỏ hơn 0 được gọi là số hữu tỉ âm

Số hữu tỉ 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.

Ví dụ: frac{2}{3}; frac{3}{5}

2. Cộng, trừ số hữu tỉ

2.1. Cộng, trừ hai số hữu tỉ

– Ta có thể cộng, trừ hai số hữu tỉ x, y bằng cách viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi áp dụng quy tắc cộng, trừ phân số

– Phép cộng số hữu tỉ có các tính chất của phép cộng phân số:

  • Tính chất giao hoán
  • Tính chất kết hợp
  • Cộng với số 0

– Mỗi số hữu tỉ đều có một số đối.

Ví dụ:

frac{-1}{21}+frac{-1}{28}=frac{-4}{84}+frac{-3}{84}=frac{(-4)+(-3)}{84}=frac{-7}{84}

2.2. Quy tắc “chuyển vế”

Khi chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.

Ví dụ:

mathrm{x}+frac{1}{3}=frac{3}{4} Leftrightarrow mathrm{x}=frac{3}{4}-frac{1}{3} Leftrightarrow mathrm{x}=frac{5}{12}

3. Nhân, chia số hữu tỉ

3.1. Nhân, chia hai số hữu tỉ

– Ta có thể nhân, chia hai số hữu tỉ bằng viết chúng dưới dạng phân số rồi áp dụng quy tắc nhân, chia phân số.

– Phép nhân số hữu tỉ có các tính chất của phép nhân phân số:

  • Tính chất giao hoán
  • Tính chất kết hợp
  • Nhân với số 1
  • Tính chất phân phối của phép nhân đối với phép cộng.
  • Mỗi số hữu tỉ khác 0 đều có một số nghịch đảo

Ví dụ:

3,5 cdotleft(-1 frac{2}{5}right)=frac{7}{2} cdot frac{-7}{5}=frac{-49}{10}

4. Giá trị tuyệt đối của một số hữu tỉ

Giá trị tuyệt đối của một số hữu tỉ x, kí hiệu là là khoảng cách từ điểm x đến điểm 0 trên trục số

Ví dụ:

mathrm{x}=frac{1}{5} Leftrightarrowleft[begin{array}{l}mathrm{x}=frac{1}{5} \ mathrm{x}=-frac{1}{5}end{array}right.

5. Cộng, trừ, nhân chia số thập phân

Để cộng, trừ, nhân, chia số thập phân, ta có thể viết chúng dưới dạng phân số thập phân rồi làm theo quy tắc các phép tính đã biết về phân số.

0,5+0,75=frac{1}{2}+frac{3}{4}=frac{2}{4}+frac{3}{4}=frac{5}{4}

6. Lũy thừa của một số hữu tỉ

6.1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của một số hữu tỉ x, kí hiệu là , là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)

Quy ước: x^{1}=x ; x^{0}=1(x neq 0)

Ví dụ: 2^{3}=2.2 .2 ; 3^{5}=3.3 .3 .3 .3

6.2. Tích và thương của hai lũy thừa cùng cơ số

-quad mathrm{x}^{mathrm{m}} cdot mathrm{x}^{mathrm{n}}=mathrm{x}^{mathrm{m}+mathrm{n}} (Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng hai số mũ)

- mathrm{x}^{mathrm{m}}: mathrm{x}^{mathrm{n}}=mathrm{x}^{mathrm{m}-mathrm{n}}(mathrm{x} neq 0, mathrm{~m} geq mathrm{n}) (Khi chia hai lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi số mũ của lũy thừa chia).

Ví dụ:3^{5} cdot 3^{2}=3^{5+2}=3^{7} ; 2^{5}: 2^{2}=2^{5-2}=2^{3}

6.3. Lũy thừa của lũy thừa

left(mathrm{x}^{mathrm{m}}right)^{mathrm{n}}=mathrm{x}^{mathrm{m} . mathrm{n}} (Khi tính lũy thừa của môt lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ.

Ví dụ:left(2^{3}right)^{2}=2^{3.2}=2^{6}

6.4. Lũy thừa của một tích

(mathrm{x} cdot mathrm{y})^{mathrm{n}}=mathrm{x}^{mathrm{n}} . mathrm{y}^{mathrm{n}} (Lũy thừa của môt tích bằng tích các lũy thừa)

Ví dụ:(2.3)^{2}=2^{2} cdot 3^{2}=4.9=36

………….

B. Bài tập Số hữu tỉ

Bài toán 1: Điền kí hiệu ( in,notin,subset) vào chỗ trống

a) -5 square mathbb{N}

b) -5 square mathbb{Z}

c) -5 square mathbb{Q}

d) -frac{3}{7} square mathbb{Z}

e) -frac{3}{7} square mathbb{Q}

g) mathbb{N} square mathbb{Q}

h) frac{6}{7} square mathbb{Q}

f) mathbb{N} square mathbb{Z} square mathbb{Q}

Bài toán 2: Điền ký hiệu (N, mathbb{Z}, mathbb{Q}) vào chỗ trống

a) -3 in square

b) 10 in square

c) frac{-3}{7} in square

d) frac{2}{9} in square

Bài toán 3: Trong các phân số sau, phân số nào biểu diễn số hữu tỉ

frac{2}{5} ; frac{6}{-15} ;-frac{3}{7} ; frac{4}{-12} ; frac{-14}{35} ; frac{4}{-10} ; frac{17}{40}

Bài toán 4: So sánh các số hữu tỉ

1. x = frac{2}{- 5}  và y = frac{-3 }{13}

2. x=frac{-196}{225}y=frac{13}{-15}

3. x=-0,375 và  y=frac{-3}{8}

4. x=frac{34}{-4}y=-8,6

5. x=frac{3}{7}và y=frac{11}{15}

6. mathrm{x}=frac{-11}{6}mathrm{y}=frac{-8}{9}

7. x=frac{297}{16}  và y=frac{306}{25}

8. mathrm{x}=frac{-1}{4}mathrm{y}=frac{1}{100}

9. mathrm{x}=frac{127}{-128}mathrm{y}=frac{-1345}{1344}

10. x=frac{-11}{33}y=frac{25}{-76}

11 . mathrm{x}=-frac{17}{23}mathrm{y}=frac{-171717}{232323}

12. x=frac{-265}{317}y=frac{-83}{111}

13. mathrm{x}=frac{2002}{2003}mathrm{y}=frac{14}{13}

14. x=frac{-27}{463}y=frac{-1}{-3}

Bài toán 5: Trong các câu sau, câu nào đúng, câu nào sai?

a) Số hữu tỉ dương lớn hơn số hữu tỉ âm

b) Số hữu tỉ dương lớn hơn số tự nhiên

c) Số 0 là số hữu tỉ âm

d) Số nguyên dương là số hữu tỉ.

Bài toán 6: Sắp xếp các số hữu tỉ sau theo thứ tự giảm dần:

a) frac{-12}{17} ; frac{-3}{17} ; frac{-16}{17} ; frac{-1}{17} ; frac{-11}{17} ; frac{-14}{17} ; frac{-9}{17}

b) frac{-5}{9} ; frac{-5}{7} ; frac{-5}{2} ; frac{-5}{4} ; frac{-5}{8} ; frac{-5}{3} ; frac{-5}{11}

c) frac{-7}{8} ; frac{-2}{3} ; frac{-3}{4} ; frac{-18}{19} ; frac{-27}{28}

Bài toán 7: Cho số hữu tỉ x=frac{a-3}{2} . với giá trị nào của a thì:

a) x là số nguyên dương;

b) x là số âm;

c) x không là số dương và cũng không là số âm.

Bài toán 8: Cho số hữu tỉ y=frac{2 a-1}{-3} Với giá trị nào của a thì:

a) y là số nguyên dương;

b) y là số âm;

c) y không là số dương và cũng không là số âm.

Bài toán 9: Cho số hữu tỉ mathrm{x}=frac{mathrm{a}-5}{mathrm{a}}(mathrm{a} neq 0). Với giá trị nào của a thì x là số nguyên.

Bài toán 10: Cho số hữu tỉ mathrm{x}=frac{mathrm{a}-3}{2 mathrm{a}}(mathrm{a} neq 0). Với giá trị nào của a thì x là số nguyên.

……………..

Bài toán 26

a) frac{20^{5} cdot 5^{10}}{100^{5}}

b) frac{(0,9)^{5}}{(0,3)^{6}}

c) frac{6^{3}+3.6^{2}+3^{3}}{13}

d) frac{4^{6} cdot 9^{5}+6^{9} cdot 120}{8^{4} cdot 3^{12}-6^{11}}

Bài toán 27: So sánh:

a) 2^{24} và 3^{16}

b) 3^{34} và 5^{20}

c) 71^{5} và 17^{20}

d)3.24^{100} và 3^{300}+4^{300}

Bài toán 28: Tìm các số nguyên dương mathrm{n}, biết:

a) <img alt="quad 32<2^{mathrm{n}}<128" width="133" height="17" data-latex="quad 32<2^{mathrm{n}}

b) 4″ width=”110″ height=”18″ data-latex=”2.16 geq 2^{mathrm{n}}>4″ class=”lazy” data-src=”https://tex.vdoc.vn?tex=2.16%20%5Cgeq%202%5E%7B%5Cmathrm%7Bn%7D%7D%3E4″>

c) 9.27 leq 3^{mathrm{n}} leq 243

Bài toán 29: Chứng minh rằng với mọi số nguyên dương n, thì:

a) 3^{mathrm{n}+2}-2^{mathrm{n}+2}+3^{mathrm{n}}-2^{mathrm{n}} chia hết cho 10

b) 3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2} chia hết cho 6.

Bài toán 30: Tìm x, y biết: (2 mathrm{x}-5)^{2000}+(3 mathrm{y}+4)^{2002} leq 0

Bài toán 31: Tính

a) mathrm{M}=frac{8^{10}+4^{10}}{8^{4}+4^{11}}

b) mathrm{N}=frac{15^{30}}{45^{15}}

…………..

Tài liệu vẫn còn tải file tài liệu để xem nội dung chi tiết

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 7

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!