Lớp 9

Giải Toán 9 Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Giải bài tập SGK Toán 9 trang 68, 69, 70 giúp các em học sinh lớp 9 xem gợi ý giải các bài tập của Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông thuộc chương trình Hình học 9 Chương 1. Qua đó các em sẽ nhanh chóng hoàn thiện toàn bộ bài tập của bài 1 Chương I Hình học 9 tập 1.

Giải bài tập toán 9 trang 68, 69, 70 tập 1

Bài 1 (trang 68 SGK Toán 9 Tập 1)

Hãy tính x và y trong mỗi hình sau: (h.4a, b)

Bạn đang xem: Giải Toán 9 Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Gợi ý đáp án 

a) Đặt tên các đỉnh của tam giác như hình dưới:

Áp dụng định lí Pytago vào Delta{ABC} vuông tại A, ta có:

BC=sqrt{AB^2+AC^2}=sqrt{6^2+8^2}=10

Áp dụng hệ thức lượng vào Delta{ABC} vuông tại A, đường cao AH, ta có:

AB^2=BC.BHRightarrow BH=dfrac{AB^2}{BC}=dfrac{6^2}{10}=3,6

Lại có HC=BC-BH=10-3,6=6,4

Vậy x =BH= 3,6; y=HC = 6,4.

b) Đặt tên các đỉnh của tam giác như hình dưới

Áp dụng hệ thức lượng vào Delta{ABC} vuông tại A, đường cao AH, ta có:

AB^2=BH.BC Leftrightarrow 12^2=20.x Rightarrow x=dfrac{12^2}{20}=7,2

Lại có: HC=BC-BH=20-7,2=12,8

Vậy x=BH = 7,2; y=HC = 12,8.

Bài 2 (trang 68 SGK Toán 9 Tập 1)

Hãy tính x và y trong mỗi hình sau: (h.5)

Gợi ý đáp án 

Ta có: BC=BH + HC=1+4=5.

Xét Delta{ABC} vuông tại A, đường cao AH, áp dụng hệ thức lượng trong tam giác vuông, ta có:

AB^2=BH.BC Leftrightarrow x^2=1.5 (với x > 0)

Leftrightarrow x^2=5 Leftrightarrow x=sqrt 5.

AC^2=CH.BC Leftrightarrow y^2=4.5 (với y> 0)

Leftrightarrow y^2=20 Leftrightarrow y=sqrt{20} Leftrightarrow y=2sqrt{5}.

Vậy x= sqrt 5, y=2sqrt 5.

Bài 3 (trang 69 SGK Toán 9 Tập 1)

Hãy tính x và y trong mỗi hình sau: (h.6)

Gợi ý đáp án 

Xét Delta{ABC} vuông tại A. Theo định lí Pytago, ta có:

BC^2=AB^2+AC^2

Leftrightarrow y^2=5^2+7^2 Leftrightarrow y^2=25+49

Leftrightarrow y^2=74 Leftrightarrow y=sqrt{74}

Áp dụng hệ thức liên quan đến đường cao trong tam giác vuông, ta có:

dfrac{1}{AH^2}=dfrac{1}{AB^2}+dfrac{1}{AC^2}

Leftrightarrow dfrac{1}{x^2}=dfrac{1}{5^2}+dfrac{1}{7^2} Leftrightarrow dfrac{1}{x^2}=dfrac{1}{25}+dfrac{1}{49}

Leftrightarrow dfrac{1}{x^2}=dfrac{49}{25.49}+dfrac{25}{25.49} Leftrightarrow dfrac{1}{x^2}=dfrac{49+25}{25.49}

Leftrightarrow dfrac{1}{x^2}=dfrac{74}{1225} Leftrightarrow x=sqrt{dfrac{1225}{74}}

Leftrightarrow x=dfrac{35sqrt{74}}{74}

Vậy  x=dfrac{35sqrt{74}}{74}, , y=sqrt {74}

Bài 4 (trang 69 SGK Toán 9 Tập 1)

Hãy tính x và y trong mỗi hình sau: (h.7)

Gợi ý đáp án 

Theo định lí 2 ta có:

22 = 1.x => x = 4

Theo định lí 1 ta có:

y2 = x(1 + x) = 4(1 + 4) = 20

=> y = √20 = 2√5

Giải bài tập toán 9 trang 69, 70 tập 1: Luyện tập

Bài 5 (trang 69 SGK Toán 9 Tập 1)

Trong tam giác vuông với các cạnh góc vuông có độ dài 3 và 4, kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và độ dài các đoạn thẳng mà nó định ra trên cạnh huyền.

Gợi ý đáp án 

Xét Delta{ABC} vuông tại A, đường cao AH có AB=3, AC=4. Ta cần tính AH, BH và CH.

Áp dụng định lí Pytago cho Delta{ABC} vuông tại A, ta có:

BC^2=AB^2+AC^2

Leftrightarrow BC^2= 3^2+4^2 Leftrightarrow BC^2=9+16=25

Leftrightarrow BC=sqrt{25}= 5.

Xét Delta{ABC} vuông tại A, đường cao AH. Áp dụng các hệ thức lượng trong tam giác vuông, ta được:

*AH.BC=AB.AC Leftrightarrow AH.5=3.4

Leftrightarrow AH=dfrac{3.4}{5}=2,4

* AB^2=BH.BC Leftrightarrow 3^2=BH.5 Leftrightarrow 9=BH.5 Leftrightarrow BH=dfrac{9}{5}=1,8

* AC^2=CH.BC Leftrightarrow 4^2=CH.5 Leftrightarrow 16=CH.5 Leftrightarrow CH=dfrac{16}{5}=3,2

Bài 6 (trang 69 SGK Toán 9 Tập 1)

Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 1 và 2. Hãy tính các cạnh góc vuông của tam giác này.

Gợi ý đáp án 

ΔABC vuông tại A và đường cao AH như trên hình.

BC = BH + HC = 1 + 2 = 3

Theo định lí 1: AB2 = BH.BC = 1.3 = 3

=> AB = √3

Theo định lí 1: AC2 = HC.BC = 2.3 = 6

=> AC = √6

Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.

Bài 7 (trang 69 SGK Toán 9 Tập 1)

Người ta đưa ra hai cách vẽ đoạn trung bình nhân x của hai đoạn thẳng a, b (tức là x2 = ab) như trong hai hình sau:

Gợi ý đáp án 

Theo cách dựng, ΔABC có đường trung tuyến AO bằng một nửa cạnh BC, do đó ΔABC vuông tại A.

Vì vậy AH2 = BH.CH hay x2 = ab

Đây chính là hệ thức (2) hay cách vẽ trên là đúng.

Bài 8 (trang 70 SGK Toán 9 Tập 1)

Tìm x và y trong mỗi hình sau:

Gợi ý đáp án 

Đặt tên các điểm như hình vẽ:

Xét Delta{ABC} vuông tại A, đường cao AH. Áp dụng hệ thức h^2=b'.c', ta được:

AH^2=BH.CH Leftrightarrow x^2=4.9=36 Leftrightarrow x=sqrt{36}=6

Vậy x=6

b) Đặt tên các điểm như hình vẽ

Xét Delta{DEF} vuông tại D, đường cao DH. Áp dụng hệ thức dfrac{1}{h^2}=dfrac{1}{b^2}+dfrac{1}{c^2}, ta được:

dfrac{1}{DH^2}=dfrac{1}{DE^2}+dfrac{1}{DF^2} Leftrightarrow dfrac{1}{2^2}=dfrac{1}{y^2}+dfrac{1}{y^2}

Leftrightarrow dfrac{1}{4}=dfrac{2}{y^2} Leftrightarrow y^2=4.2=8 Leftrightarrow y=sqrt 8=2sqrt 2.

Xét Delta{DHF} vuông tại H. Áp dụng định lí Pytago, ta có:

DF^2=DH^2+HF^2 Leftrightarrow (2sqrt 2)^2=2^2+x^2 Leftrightarrow 8=4+x^2

Leftrightarrow x^2=4 Leftrightarrow x=sqrt 4=2

Vậy x= 2, y=2sqrt 2.

c) Đặt tên các điểm như hình vẽ:

Xét Delta{MNP} vuông tại P, đường cao PH. Áp dụng hệ thức h^2=b'.c‘, ta được:

PH^2=HM.HN Leftrightarrow 12^2=16.x Leftrightarrow 144=16.x Leftrightarrow x=dfrac{144}{16}=9

Xét Delta{PHN}vuông tại H. Áp dụng định lí Pytago, ta có:

PN^2=PH^2+HN^2 Leftrightarrow y^2=12^2+9^2 Leftrightarrow y^2=144+81=225 Leftrightarrow y= sqrt{225}=15

Vậy x=9, y=15.

Bài 9 (trang 70 SGK Toán 9 Tập 1)

Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng:

a) Tam giác DIL là một tam giác cân

b) Tổng dfrac{1}{DI^{2}}+dfrac{1}{DK^{2}}

Gợi ý đáp án

a) Xét Delta ADI và Delta CDL có:

widehat{A}=widehat{C}= 90^{circ}

AD=CD (hai cạnh hình vuông)

widehat{D_{1}}=widehat{D_{2}} (cùng phụ với widehat{CDI})

Do đó Delta ADI=Delta CDL (g.c.g)

Suy ra DI=DL.

Vậy Delta DIL cân (đpcm).

b) Xét Delta{DLK} vuông tại D, đường cao DC.

Áp dụng hệ thức dfrac{1}{h^{2}}=dfrac{1}{b^{2}}+dfrac{1}{c^{2}}, ta có:

dfrac{1}{DC^{2}}=dfrac{1}{DL^{2}}+dfrac{1}{DK^{2}} (mà DL=DI)

Suy ra dfrac{1}{DC^{2}}=dfrac{1}{DI^{2}}+dfrac{1}{DK^{2}}

Do DC không đổi nên dfrac{1}{DI^{2}}+dfrac{1}{DK^{2}}là không đổi.

Nhận xét: Câu a) chỉ là gợi ý để làm câu b). Điều phải chứng minh ở câu b) rất gần với hệ thức dfrac{1}{h^{2}}=dfrac{1}{b^{2}}+dfrac{1}{c^{2}}

Nếu đề bài không cho vẽ DLperp DK thì ta vẫn phải vẽ đường phụ DLperp DK để có thể vận dụng hệ thức trên.

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 9

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!