Giải Toán 9 Bài 1: Căn bậc hai
Giải Toán 9 Bài 1: Căn bậc hai giúp các bạn học sinh tham khảo cách giải, đối chiếu với lời giải hay chính xác phù hợp với năng lực của các bạn lớp 9.
Giải bài tập Toán 9 trang 6, 7 tập 1 được biên soạn đầy đủ tóm tắt lý thuyết, trả lời các câu hỏi phần bài tập cuối bài. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm, củng cố, bồi dưỡng và kiểm tra vốn kiến thức của bản thân. Vậy sau đây là nội dung chi tiết giải bài tập Toán 9 bài 1 tập 1, mời các bạn cùng theo dõi tại đây.
Bạn đang xem: Giải Toán 9 Bài 1: Căn bậc hai
Lý thuyết Căn bậc hai
I. Căn bậc hai số học
1. Nhắc lại
Ở lớp 7, ta đã biết:
+ Căn bậc hai của một số a không âm là số x sao cho
+ Số dương a có đúng hai căn bậc hai là hai số đối nhau là và
+ Số 0 có đúng một căn bậc hai là chính số 0, ta viết
Ví dụ: Số 9 có hai căn bậc hai là 3 và -3
2. Định nghĩa
Với số dương a, số được gọi là căn bậc hai số học của a.
Số 0 cũng được gọi là căn bậc hai số học của 0.
Ví dụ: Căn bậc hai số học của số 9 là
Chú ý.:
Với , ta có:
+ Nếu thì
+ Nếu
Ta viết
II. So sánh các căn bậc hai số học
Định lý
Với hai số a;b không âm ta có a < b <img alt="Leftrightarrow sqrt a < sqrt b" width="97" height="25" data-latex="Leftrightarrow sqrt a
Ví dụ 1:
a) 9 và √80
b) √15 – 1 và √10
Hướng dẫn:
a) Ta có: 9 = √81. Vì √81 > √80 nên 9 > √80
b) Ta có: √15 – 1 < √16 – 1 = 3
√10 > √9 = 3
Vậy √15-1 < √10
Ví dụ 2:
So sánh các số sau:
a) 2 và √3
b) 7 và √50
Hướng dẫn:
a) Ta có: 1 + √2 > 1 + 1 = 2
⇒ 2 < 1 + √2
b) √3 – 1 < √4 – 1 = 2 – 1 = 1
⇒ √3 – 1 < 1
Giải bài tập toán 9 trang 6, 7 tập 1
Bài 1 (trang 6 SGK Toán 9 Tập 1)
Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng
121; 144; 169; 225; 256; 324; 361; 400.
Gợi ý đáp án
Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên
Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.
Tương tự:
Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.
Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.
Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.
Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.
Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.
Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.
Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.
Bài 2 (trang 6 SGK Toán 9 Tập 1)
So sánh:
a) 2 và √3 ;
b) 6 và √41 ;
c) 7 và √47
Gợi ý đáp án
a) 2 = √4
Vì 4 > 3 nên √4 > √3 (định lí)
Vậy 2 > √3
b) 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
Bài 3 (trang 6 SGK Toán 9 Tập 1)
Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương tình sau (làm tròn đến chữ số thập phân thứ ba):
a) x2 = 2 ;
c) x2 = 3,5 ;
b) x2 = 3
d) x2 = 4,12
Hướng dẫn: Nghiệm của phương trình x2 = a ( với a ≥ 0) là các căn bậc hai của a.
Gợi ý đáp án
a) x2 = 2 => x1 = √2 và x2 = -√2
Dùng máy tính bỏ túi ta tính được:
√2 ≈ 1,414213562
Kết quả làm tròn đến chữ số thập phân thứ ba là:
x1 = 1,414; x2 = – 1,414
b) x2 = 3 => x1 = √3 và x2 = -√3
Dùng máy tính ta được:
√3 ≈ 1,732050907
Vậy x1 = 1,732; x2 = – 1,732
c) x2 = 3,5 => x1 = √3,5 và x2 = -√3,5
Dùng máy tính ta được:
√3,5 ≈ 1,870828693
Vậy x1 = 1,871; x2 = – 1,871
d) x2 = 4,12 => x1 = √4,12 và x2 = -√4,12
Dùng máy tính ta được:
√4,12 ≈ 2,029778313
Vậy x1 = 2,030 ; x2 = – 2,030
Bài 4 (trang 7 SGK Toán 9 Tập 1)
Tìm số x không âm, biết:
a) √x = 15;
c) √x < √2;
b) 2√x = 14
d) √2x < 4
Gợi ý đáp án
Lưu ý: Vì x không âm (x ≥ 0) nên các căn thức trong bài đều xác định.
a) √x = 15
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 152 ⇔ x = 225
Vậy x = 225
b) 2√x = 14 ⇔ √x = 7
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 72 ⇔ x = 49
Vậy x = 49
c) √x < √2
Vì x ≥ 0 nên bình phương hai vế ta được: x < 2
Vậy 0 ≤ x < 2
d) < 4
Vì x ≥ 0 nên bình phương hai vế ta được:
2x < 16 ⇔ x < 8
Vậy 0 ≤ x < 8
Bài 5 (trang 7 SGK Toán 9 Tập 1)
Đố. Tính cạnh một hình vuông, biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3,5m và chiều dài 14m
Gợi ý đáp án
Diện tích hình chữ nhật: SHCN = 3,5.14 = 49 (m2)
Gọi a (m) (a > 0) là độ dài của cạnh hình vuông. Suy ra diện tích hình vuông là
SHV = a2 = 49 (m2)
=> a = 7 (m)
Vậy cạnh hình vuông có độ dài là 7m.
Đăng bởi: THPT Nguyễn Đình Chiểu
Chuyên mục: Tài Liệu Lớp 9