Lớp 12

Công thức Vật lí 12

Công thức Vật lí 12 tổng hợp toàn bộ kiến thức, công thức trọng tâm trong chương trình Lí 12 cả năm. Qua đó giúp các em lớp 12 ôn tập và nắm vững kiến thức nhanh nhất, hiệu quả nhất.

Công thức Lí 12 được biên soạn theo từng bài, từng chương như sách giáo khoa. Tổng hợp công thức Vật lý 12 sẽ giúp các em nhanh chóng nắm vững kiến thức từ đó biết cách giải các bài tập để đạt được kết quả cao trong các bài kiểm tra, bài thi học kì 1, kì 2 Vật lí 12. Vậy sau đây là nội dung chi tiết Công thức Lí 12, mời các bạn cùng theo dõi tại đây.

Bạn đang xem: Công thức Vật lí 12

I. Công thức dao động điều hòa

Chọn gốc tọa độ tại vị trí cân bằng:

+ Phương trình dao động:

x=A cos (omega t+varphi)

+ Phương trình vận tốc:

v=-omega A sin (omega t+varphi)

+ Phương trình gia tốc:

a=-omega^{2} A cos (omega t+varphi)=-omega^{2} x \

+mathbf{x}: text { Li độ dao động }(mathbf{c m}, mathbf{m})

+varphi text { : Pha ban đầu ( rad) }

+omega text { : Tần số góc (rad/s) }

+(omega t+varphi): text { Pha dao động (rad) }

begin{aligned} &mathrm{x}_{max }=mathrm{A} \ &mathrm{v}_{max }=omega A text { ( Tại VTCB) } \ &mathrm{a}_{max }=omega^{2} A text { ( Tại biên) } end{aligned}

* Hệ thức độc lập: A^{2}=x^{2}+frac{v^{2}}{omega^{2}}

rightarrow v=pm omega sqrt{A^{2}-x^{2}}

+ Tại VTCB: mathbf{x}=mathbf{0}, mathbf{v}_{max }=omega A, mathbf{a}=mathbf{0}

+ Tại biên: mathbf{x}_{max }=mathbf{A}, mathbf{v}=mathbf{0}, mathbf{a}_{max }=omega^{2} A

+Tốc độ trung bình trong 1 chu kì:

bar{v}=frac{4 A}{T}

II. Công thức con lắc lò xo

1. Tần số góc , chu kỳ T và tần số

omega = sqrt {frac{k}{m}} Rightarrow T = 2pi sqrt {frac{m}{k}} Rightarrow f = frac{1}{T} = frac{1}{{2pi }}sqrt {frac{k}{m}}

2. Lực kéo về (lực hồi phục; lực gây ra dao động)

– Tỉ lệ với li độ: F = - kx = - {omega ^2}.x.m = am

– Hướng về vị trí cân bằng, biến thiên điều hòa theo thời gian với cùng chu kì của li độ, ngược pha với li độ.

– Lực kéo về cực đại: {F_{max }} = k.A (A: biên độ dao động)

3. Khảo sát dao động con lắc lò xo về mặt năng lượng.

a. Động năng

{W_d} = frac{1}{2}m{v^2} = frac{1}{2}m{omega ^2}{A^2}{sin ^2}left( {omega t + varphi } right)

– Động năng cực đại: {W_{dmax }} = frac{1}{2}.m{v^2}_{max } (tại vị trí vận tốc đạt cực đại)

b. Thế năng

{W_t} = frac{1}{2}k{x^2} = frac{1}{2}m{omega ^2}{A^2}{cos ^2}left( {omega t + varphi } right)

– Thế năng cực đại: {W_{tmax }} = frac{1}{2}.k{x^2}_{max } = frac{1}{2}k{A^2} (A là biên độ dao động)

c. Cơ năng

W = {W_d} + {W_t} = frac{1}{2}k{A^2} = frac{1}{2}m{omega ^2}{A^2}

– Cơ năng của con lắc tỉ lệ với bình phương biên độ dao động, không phụ thuộc vào khối lượng vật nặng.

– Nếu tại t1 ta có x1, v1 và tại t2 ta có x2, v2. Tìm , A thì ta có: Rightarrow left{ {begin{array}{*{20}{c}} {omega = sqrt {dfrac{{{v_2}^2 - {v_1}^2}}{{{x_1}^2 - {x_2}^2}}} } \ {A = sqrt {{x_1}^2 + dfrac{{{v^2_1}}}{{{omega ^2}}}} } end{array}} right.

– Cho k, m và W tìm vmax và amax: Rightarrow left{ {begin{array}{*{20}{c}} {{v_{max }} = sqrt {dfrac{{2E}}{m}} } \ {{a_{max }} = {v_{max }}omega = dfrac{{{v^2}_{max }}}{A}} end{array}} right.

Lưu ý:

a. Một vật dao động điều hòa với tần số góc chu kì T và tần số f thì động năng và thế năng biến thiên tuần hoàn với tần số góc , tần số f’ và chu kì T’, mối liên hệ như sau:

omega ' = 2omega ,T' = frac{T}{2},f' = 2f

b. – Khoảng thời gian ngắn nhất giữa hai lần liên tiếp động năng bằng thế năng là: T/4

– Khoảng thời gian hai lần liên tiếp động năng bằng thế năng bằng không là: T/2

c. Khi con lắc lò xo dao động mà chiều dàu của lò xo thay đổi từ chiều dài cực tiểu {l_{min }} đến chiều dài cực đại {l_{max }} thì

+ Biên độ: A = frac{{{l_{max }} - {l_{min }}}}{2}

+ Chiều dài lúc cân bằng: {l_{cb}} = {l_0} + Delta l = frac{{{l_{max }} + {l_{min }}}}{2}

4. Con lắc lò xo nằm ngang

– Với con lắc lò xo nằm ngang thì lực kéo về và lực đàn hồi là một (vì tại VTCB lò xo không biến dạng)

– Lực đàn hồi: left{ {begin{array}{*{20}{c}} {{F_{dh}} = k.x} \ {{F_{dh}}_{max } = k.A} end{array}} right.

– Chiều dài cực tiểu {l_{min }} : {l_{min }} = {l_0} - A

5. Con lắc lò xo nằm nghiêng 1 góc α

– Khi cân bằng thì Delta l = frac{{g.sin alpha }}{{{omega ^2}}} Rightarrow omega = sqrt {frac{{g.sin alpha }}{{Delta l}}} Rightarrow T = 2pi sqrt {frac{{Delta l}}{{g.sin alpha }}}

left{ {begin{array}{*{20}{c}} {{l_{min }} = {l_0} + Delta l - A} \ {{l_{max }} = {l_0} + Delta l + A} \ {2{l_{cb}} = {l_{max }} + {l_{min }}} end{array} Rightarrow {l_{max }} - {l_{min }} = 2A} right.

– Lực đàn hồi:

a. Nếu A Rightarrow left{ {begin{array}{*{20}{c}}
{{F_{max }} = kleft( {Delta l + A} right)} \
{{F_{min }} = kleft( {Delta l – A} right)}
end{array}} right.” width=”257″ height=”50″ data-latex=”Delta l > A Rightarrow left{ {begin{array}{*{20}{c}}
{{F_{max }} = kleft( {Delta l + A} right)} \
{{F_{min }} = kleft( {Delta l – A} right)}
end{array}} right.” data-i=”20″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5CDelta%20l%20%3E%20A%20%5CRightarrow%20%5Cleft%5C%7B%20%7B%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bc%7D%7D%0A%20%20%7B%7BF_%7B%5Cmax%20%7D%7D%20%3D%20k%5Cleft(%20%7B%5CDelta%20l%20%2B%20A%7D%20%5Cright)%7D%20%5C%5C%20%0A%20%20%7B%7BF_%7B%5Cmin%20%7D%7D%20%3D%20k%5Cleft(%20%7B%5CDelta%20l%20-%20A%7D%20%5Cright)%7D%20%0A%5Cend%7Barray%7D%7D%20%5Cright.”>

b. Nếu Delta l leqslant A Rightarrow {F_{min }} = 0

6. Con lắc lò xo treo thẳng đứng

1. Độ biến dạng của lò xo thẳng đứng khi vật ở VTCB

Delta l = frac{g}{{{omega ^2}}} Rightarrow Delta l = frac{{mg}}{k} Rightarrow T = 2pi sqrt {frac{{Delta l}}{g}}

+ Chiều dài cực đại của lò xo tại VTCB: {l_{cb}} = {l_0} + Delta l

+ Chiều dài cực tiểu (khi ở vị trí cao nhất) {l_{min }} = {l_0} + Delta l - A

+ Chiều dài cực đại (khi ở vị trí thấp nhất) {l_{max }} = {l_0} + Delta l + A

2. Thời gian lò xo nén và giãn

a. Khi <img alt="Delta l < A" width="60" height="17" data-latex="Delta l (Với Ox hướng xuống):

– Thời gian nén trong nửa chu kì: là thời gian đi – Delta l” width=”79″ height=”19″ data-latex=”{x_1} > – Delta l” data-i=”27″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%7Bx_1%7D%20%3E%20%20-%20%5CDelta%20l”> từ đến – A;Delta t = frac{{Delta varphi }}{omega }” width=”162″ height=”42″ data-latex=”{x_2} > – A;Delta t = frac{{Delta varphi }}{omega }” data-i=”28″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%7Bx_2%7D%20%3E%20%20-%20A%3B%5CDelta%20t%20%3D%20%5Cfrac%7B%7B%5CDelta%20%5Cvarphi%20%7D%7D%7B%5Comega%20%7D”> với cos Delta varphi = frac{{Delta l}}{A}

Suy ra thời gian nén trong một chu kì là: Delta {t_{min }} = 2Delta t = frac{T}{3}

– Thời gian giãn trong nửa chu kì: là thời gian đi từ – Delta l” width=”79″ height=”19″ data-latex=”{x_1} > – Delta l” data-i=”31″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%7Bx_1%7D%20%3E%20%20-%20%5CDelta%20l”> đến A” width=”58″ height=”19″ data-latex=”{x_2} > A” data-i=”32″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%7Bx_2%7D%20%3E%20A”>. Thời gian lò xo giãn frac{T}{2} - Delta t

Suy ra thời gian giãn trong một chu kì là: Delta {t_{gian}} = T - Delta {t_{nen}} = T - 2Delta t = frac{{2T}}{3}

b. Khi A” width=”60″ height=”17″ data-latex=”Delta l > A” data-i=”35″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5CDelta%20l%20%3E%20A”> (Với Ox hướng xuống):

Khi A” width=”60″ height=”17″ data-latex=”Delta l > A” data-i=”36″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5CDelta%20l%20%3E%20A”> thì thời gian lò xo giãn trong một chu kì là Delta t = T

……….

Mời các bạn tải File về để xem thêm Công thức Lí 12

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 12

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!