Công thức tính diện tích tam giác
Tam giác là một hình cơ bản và khá thường nhật trong hình học, là hình gồm ba điểm không thẳng hàng và ba cạnh là ba đoạn thẳng nối các đỉnh với nhau.
Vậy công thức tính diện tích tam giác là gì? Diện tích tam giác đều, diện tích tam giác vuông tính như thế nào? Mời các bạn hãy cùng THPT Nguyễn Đình Chiểu theo dõi bài viết dưới đây nhé.
Bạn đang xem: Công thức tính diện tích tam giác
I. Công thức tính diện tích tam giác
1. Tính diện tích tam giác thường
Tam giác ABC có ba cạnh a, b, c, ha là đường cao từ đỉnh A như hình vẽ:
a. Công thức chung
Diện tích tam giác bằng ½ tích của chiều cao hạ từ đỉnh với độ dài cạnh đối diện của đỉnh đó.
Ví dụ:
Tính diện tích hình tam giác có độ dài đáy là 5m và chiều cao là 24dm.
Giải: Chiều cao 24dm = 2,4m
Diện tích tam giác là
Xem thêm: Công thức tính diện tích hình vuông
b. Tính diện tích tam giác khi biết một góc
Diện tích tam giác bằng ½ tích hai cạnh kề với sin của góc hợp bởi hai cạnh đó trong tam giác.
Ví dụ:
Tam giác ABC có cạnh BC = 7, cạnh AB = 5, góc B bằng 60 độ. Tính diện tích tam giác ABC?
c. Tính diện tích tam giác khi biết 3 cạnh bằng công thức Heron.
Sử dụng công thức Heron đã được chứng minh:
Với p là nửa chu vi tam giác:
Có thể viết lại bằng công thức:
Ví dụ:
Tính diện tích hình tam giác có độ dài cạnh AB = 8, AC = 7, CB = 9
Giải:
Nửa chu vi tam giác ABC là Áp dụng công thức hero ta có |
d. Tính diện tích bằng bán kính đường tròn ngoại tiếp tam giác (R).
Cách khác: |
Lưu ý: Cần phải chứng minh được R là bán kính đường tròn ngoại tiếp tam giác.
Ví dụ:
Cho tam giác ABC, độ dài các cạnh a = 6, b = 7, c = 5, R = 3 (R là bán kính đường tròn ngoại tiếp tam giác ABC). Tính diện tích của tam giác ABC.
Giải:
e. Tính diện tích bằng bán kính đường tròn nội tiếp tam giác (r).
|
Ví dụ: Tính diện tích tam giác ABC biết độ dài các cạnh AB = 20, AC = 21, BC = 15, r = 5 (r là bán kính đường tròn nội tiếp tam giác ABC).
Giải:
Nửa chu vi tam giác là:
r= 5
Diện tích tam giác là:
2. Tính diện tích tam giác cân
Tam giác cân ABC có ba cạnh, a là độ dài cạnh đáy, b là độ dài hai cạnh bên, ha là đường cao từ đỉnh A như hình vẽ:
Áp dụng công thức tính diện tích thường, ta có công thức tính diện tích tam giác cân:
3. Tính diện tích tam giác đều
Tam giác đều ABC có ba cạnh bằng nhau, a là độ dài các cạnh như hình vẽ:
Áp dụng định lý Heron để suy ra, ta có công thức tính diện tích tam giác đều:
Xem thêm: Công thức tính chu vi, diện tích tam giác
4. Tính diện tích tam giác vuông
Tam giác ABC vuông tại B, a, b là độ dài hai cạnh góc vuông:
Áp dụng công thức tính diện tích thường cho diện tích tam giác vuông với chiều cao là 1 trong 2 cạnh góc vuông và cạnh đáy là cạnh còn lại.
Công thức tính diện tích tam giác vuông:
5. Tính diện tích tam giác vuông cân
Tam giác ABC vuông cân tại A, a là độ dài hai cạnh góc vuông:
Áp dụng công thức tính diện tích tam giác vuông cho diện tích tam giác vuông cân với chiều cao và cạnh đáy bằng nhau, ta có công thức:
II. Các dạng bài tập về diện tích hình tam giác
Dạng 1: Tính diện tích tam giác khi biết độ dài đáy và chiều cao
Ví dụ 1: Tính diện tích tam giác thường và tam giác vuông có:
a) Độ dài đáy bằng 32cm và chiều cao bằng 25cm.
b) Hai cạnh góc vuông có độ dài lần lượt là 3dm và 4dm.
Bài làm
a) Diện tích hình tam giác là:
32 x 25 : 2 = 400 (cm2)
b) Diện tích hình tam giác là:
3 x 4 : 2 = 6 (dm2)
Đáp số: a) 400cm2
b) 6dm2
Dạng 2: Tính độ dài đáy khi biết diện tích và chiều cao
+ Từ công thức tính diện tích, ta suy ra công thức tính độ dài đáy: a = S x 2 : h
Ví dụ 1: Tính độ dài cạnh đáy của hình tam giác có chiều cao bằng 80cm và diện tích bằng 4800cm2.
Bài làm
Độ dài cạnh đáy của hình tam giác là:
4800 x 2 : 80 = 120 (cm)
Đáp số: 120cm
Ví dụ 2: Cho hình tam giác có diện tích 5/8m2 chiều cao là 1/2 m. Tính độ dài cạnh đáy của tam giác đó?
Bài làm
Độ dài cạnh đáy của tam giác là:
(m)
Đáp số: 5/2m
Dạng 3: Tính chiều cao khi biết diện tích và độ dài đáy
+ Từ công thức tính diện tích, ta suy ra công thức tính chiều cao: h = S x 2 : a
Ví dụ 1: Tính chiều cao của hình tam giác có độ dài cạnh đáy bằng 50cm và diện tích bằng 1125cm2.
Bài làm
Chiều cao của hình tam giác là:
1125 x 2 : 50 = 45 (cm)
Đáp số: 45cm
Dạng bài tập nâng cao
Cho tam giác AOB vuông tại O với đường cao OM (h.131). Hãy giải thích vì sao ta có đẳng thức:
AB.OM = OA.OB
Gợi ý đáp án:
Ta có cách tính diện tích tam giác AOB với đường cao OM và cạnh đáy AB:
Ta lại có cách tính diện tích tam giác AOB vuông với hai cạnh góc vuông OA, OB là
III. Bài tập tự luyện diện tích tam giác
Câu 1:
Tính diện tích hình tam giác có:
a) Độ dài đáy là 32cm và chiều cao là 22cm;
b) Độ dài đáy là 2,5 cm và chiều cao là 1,2cm;
Câu 2:
Tính diện tích hình tam giác có:
a) Độ dài đáy là 45cm và chiều cao là 2,4dm;
b) Độ dài đáy là 1,5 m và chiều cao là 10,2dm;
Câu 3:
Tính diện tích hình tam giác có:
a) Độ dài đáy là 3/4m và chiều cao là 1/2m;
b) Độ dài đáy là 4/5 m và chiều cao là 3,5 dm;
Câu 4:
Tính diện tích hình tam giác vuông có độ dài 2 cạnh góc vuông lần lượt là:
a) 35cm và 15 cm.
b) 3,5 m và 15 dm.
Câu 5:
Tính diện tích hình tam giác MDC. Biết hình chữ nhật ABCD có AB = 25 cm, BC = 16cm.
Câu 6:
Tính diện tích hình tam giác MDN. Biết hình vuông ABCD có cạnh 20cm và AM = MB , BN = NC.
Trên đây là toàn bộ công thức, cách tính diện tích tam giác thường, diện tích tam giác đều, cách tính diện tích tam giác vuông cân…. Hy vọng qua tài liệu này các bạn có thêm nhiều gợi ý ôn tập, củng cố kiến thức để biết cách giải các bài tập về tam giác.
Đăng bởi: THPT Nguyễn Đình Chiểu
Chuyên mục: Tài Liệu Lớp 8