Lớp 9

Chứng minh phương trình luôn có nghiệm với mọi m

Chứng minh phương trình luôn có nghiệm với mọi m tóm tắt các lý thuyết liên quan, cách giải và ví dụ minh họa kèm theo. Qua đó giúp học sinh nhanh chóng biết cách vận dụng vào giải Toán 9.

Đây là một trong những dạng toán khó, nhằm kiểm tra trình độ, phân loại học sinh lớp 9. Chính vì vậy hôm nay THPT Nguyễn Đình Chiểu đã giới thiệu khái quát về lý thuyết và cách giải chi tiết. Qua đó giúp học sinh củng cố, nắm vững kiến thức nền tảng, vận dụng với các bài tập cơ bản; học sinh có học lực khá, giỏi nâng cao tư duy và kỹ năng giải đề với các bài tập vận dụng nâng cao.

Bạn đang xem: Chứng minh phương trình luôn có nghiệm với mọi m

1. Phương trình bậc 2 là gì?

Phương trình bậc 2 là phương trình có dạng:

ax2+bx+c=0 (a≠0), được gọi là phương trình bậc 2 với ẩn là x.(1)

Nhiệm vụ là phải giải phương trình trên để đi tìm giá trị của x sao cho khi thay x vào phương trình (1) thì thỏa mãn ax2+bx+c=0.

2. Cách giải phương trình bậc 2

Cách giải phương trình bậc 2 như sau:

Bước 1: Tính Δ=b2-4ac

Bước 2: So sánh Δ với 0

Khi:

  • Δ < 0 => phương trình (1) vô nghiệm
  • Δ = 0 => phương trình (1) có nghiệm kép x = frac{-b}{2a}
  • Δ > 0 => phương trình (1) có 2 nghiệm phân biệt x_{1}=frac{-b+sqrt{Delta}}{2 a}{ }_{v a ̀} x_{2}=frac{-b-sqrt{Delta}}{2 a}

3. Định lý Viet và ứng dụng trong phương trình bậc 2

Cho phương trình bậc 2: a times 2+b x+c=0(a neq 0). Giả sử phương trình có 2 nghiệm x1 và x2, lúc này hệ thức sau được thỏa mãn

left{begin{array}{l} x_{1}+x_{2}=-frac{b}{a} \ x_{1} x_{2}=frac{c}{a} end{array}right.

Dựa vào hệ thức trên ta có thể tính biểu thức đối xứng x1,x2 thông qua định lý Viet.

  • x1+x2=-b/a
  • x12+x22=(x1+x2)2-2x1x2=(b2-2ac)/a2

Định lý Viet đảo giả sử như tồn tại 2 số thực x1, x2 thỏa mãn x1+x2=S, x1x2=P thì x1, x2 là 2 nghiệm của phương trình x2-Sx+P=0

4. Cách chứng minh phương trình luôn có nghiệm với mọi m

Bước 1: Tính Delta

Bước 2: Biến đổi biểu thức Delta, chứng minh Delta luôn dương thì phương trình luôn có nghiệm với mọi giá trị của m.

Bước 3: Kết luận.

5. Ví dụ chứng minh phương trình luôn có nghiệm với mọi m

Ví dụ: Cho pt x2 – (m-2)x +m-4=0 (x ẩn ; m tham số )

a) chứng minh phương trình luôn có nghiệm với mọi m.

Xét Δ = (m- 2)2– 4*(m- 4)= m2– 4m+ 4- 4m+ 16= m2– 8m+ 20= (m- 4)2+ 4>= 4

Δ >= 4> 0 với mọi m => pt luôn có hai nghiệm phân biệt với mọi m .

b) Tìm giá trị của m để phương trình có 2 nghiệm đối nhau

phương trình có hai nghiệm đối nhau khi <=> x1+ x2= 0 <=> m- 2= 0 =>m=2

Vậy với m= 2 phương trình có 2 nghiệm đối nhau

Ví dụ 2. Cho phương trình {x^2} - 2left( {m - 1} right)x + m - 3 = 0 (m là tham số)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt

b) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m.

Hướng dẫn giải

a) Ta có:

Delta = {left[ { - left( {m - 1} right)} right]^2} - 1left( {m - 3} right) = {m^2} - 3m + 4 = {left( {m - frac{3}{2}} right)^2} + frac{7}{4}> 0;forall m” width=”591″ height=”51″ data-type=”0″ data-latex=”Delta = {left[ { – left( {m – 1} right)} right]^2} – 1left( {m – 3} right) = {m^2} – 3m + 4 = {left( {m – frac{3}{2}} right)^2} + frac{7}{4}> 0;forall m” data-i=”1″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5CDelta%20%20%3D%20%7B%5Cleft%5B%20%7B%20-%20%5Cleft(%20%7Bm%20-%201%7D%20%5Cright)%7D%20%5Cright%5D%5E2%7D%20-%201%5Cleft(%20%7Bm%20-%203%7D%20%5Cright)%20%3D%20%7Bm%5E2%7D%20-%203m%20%2B%204%20%3D%20%7B%5Cleft(%20%7Bm%20-%20%5Cfrac%7B3%7D%7B2%7D%7D%20%5Cright)%5E2%7D%20%2B%20%5Cfrac%7B7%7D%7B4%7D%20%3E%200%3B%5Cforall%20m”></p> <p>Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của tham số m</p> <p>b) Theo hệ thức Vi – et ta có: <img loading=

không phụ thuộc vào tham số m

Ví dụ 3: Cho phương trình {x^2} - 2left( {m - 1} right)x + 2m - 5 = 0 (m là tham số)

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.

b) Tìm giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x1 < 1 < x2

Hướng dẫn giải

a) Ta có:

begin{matrix} Delta = {left[ { - left( {m - 1} right)} right]^2} - 4.1left( {2m - 5} right) hfill \ Delta = 4{m^2} - 12m + 22 hfill \ Delta = {left( {2m} right)^2} - 2.2m.3 + 9 + 13 = {left( {2m + 3} right)^2} + 12> 0forall m hfill \<br/> end{matrix}” width=”453″ height=”82″ data-type=”0″ data-latex=”begin{matrix}<br/> Delta = {left[ { – left( {m – 1} right)} right]^2} – 4.1left( {2m – 5} right) hfill \<br/> Delta = 4{m^2} – 12m + 22 hfill \<br/> Delta = {left( {2m} right)^2} – 2.2m.3 + 9 + 13 = {left( {2m + 3} right)^2} + 12 > 0forall m hfill \<br/> end{matrix}” data-i=”4″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5Cbegin%7Bmatrix%7D%0A%20%20%5CDelta%20%20%3D%20%7B%5Cleft%5B%20%7B%20-%20%5Cleft(%20%7Bm%20-%201%7D%20%5Cright)%7D%20%5Cright%5D%5E2%7D%20-%204.1%5Cleft(%20%7B2m%20-%205%7D%20%5Cright)%20%5Chfill%20%5C%5C%0A%20%20%5CDelta%20%20%3D%204%7Bm%5E2%7D%20-%2012m%20%2B%2022%20%5Chfill%20%5C%5C%0A%20%20%5CDelta%20%20%3D%20%7B%5Cleft(%20%7B2m%7D%20%5Cright)%5E2%7D%20-%202.2m.3%20%2B%209%20%2B%2013%20%3D%20%7B%5Cleft(%20%7B2m%20%2B%203%7D%20%5Cright)%5E2%7D%20%2B%2012%20%3E%200%5Cforall%20m%20%5Chfill%20%5C%5C%20%0A%5Cend%7Bmatrix%7D”></p> <p>Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của tham số m.</p> <p>b) Theo hệ thức Vi – et ta có: <img loading=

Theo giả thiết ta có:

x1 < 1 < x2 => left{ {begin{array}{*{20}{c}} {{x_1} - 1 < 0} \ {{x_2} - 1> 0}<br/> end{array}} right.” width=”105″ height=”48″ data-type=”0″ data-latex=”left{ {begin{array}{*{20}{c}}<br/> {{x_1} – 1 < 0} \ {{x_2} - 1> 0}<br/> end{array}} right.” data-i=”6″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5Cleft%5C%7B%20%7B%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bc%7D%7D%0A%20%20%7B%7Bx_1%7D%20-%201%20%3C%200%7D%20%5C%5C%20%0A%20%20%7B%7Bx_2%7D%20-%201%20%3E%200%7D%20%0A%5Cend%7Barray%7D%7D%20%5Cright.”></p> <p>=> (x<sub>1</sub> – 1)(x<sub>2</sub> – 1) < 0</p> <p>=> x<sub>1</sub>x<sub>2</sub> – (x<sub>1</sub> + x<sub>2</sub>) + 1 < 0 (**)</p> <p>Từ (*) và (**) ta có:</p> <p>(2m – 5) – (2m – 2) + 1 < 0</p> <p>=> 0.2m – 2 < 0, đúng với mọi giá trị của m</p> <p>Vậy với mọi giá trị của tham số m phương trình luôn có hai nghiệm phân biệt x<sub>1</sub>, x<sub>2</sub> thỏa mãn x<sub>1</sub> < 1 < x<sub>2</sub></p> <p>Đăng bởi: <a href=THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 9

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!