Bộ đề thi học sinh giỏi lớp 9 môn Toán cấp Tỉnh, TP
Bộ đề thi HSG Toán 9 năm 2021 – 2022 là tài liệu vô cùng hữu ích mà Download.vn muốn giới thiệu đến quý thầy cô giáo, các bạn học sinh cùng tham khảo.
Đề thi học sinh giỏi Toán 9 tổng hợp 50 đề thi học sinh giỏi môn Toán cấp Tỉnh, Thành phố trong cả nước. Thông qua tài liệu này các bạn có thêm nhiều gợi ý tham khảo, luyện tập, củng cố kiến thức để biết cách giải các bài Toán 9. Hi vọng rằng, đề thi HSG Toán 9 cấp tỉnh sẽ là nguồn tài liệu bổ ích giúp các em học sinh ôn tập môn Toán tốt hơn. Bên cạnh đó cũng là nguồn tham khảo dành cho các thầy cô dạy bộ môn Toán.
Bạn đang xem: Bộ đề thi học sinh giỏi lớp 9 môn Toán cấp Tỉnh, TP
Đề thi HSG Toán 9 – Đề 1
SỞ GIÁO DỤC & ĐÀO TẠO ĐĂK LĂK ĐỀ CHÍNH THỨC | KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2020 – 2021 MÔN: TOÁN LỚP 9 – THCS Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 30/3/2021 |
Bài 1. (4 điểm)
1) Cho biểu thức với và
Tìm tất cả các giá trị nguyên của x sao cho biểu thức A nhận giá trị nguyên
2) Cho phương trình với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt sao cho
Bài 2. (4 điểm)
1) Cho parabol P: và đường thẳng Tìm b để đường thẳng d cắt parabol tại 2 điểm phân biêt A, B sao cho (với I là trung điểm của AB).
2) Giải phương trình
Bài 3. (4 điểm)
1) Tìm tất cả các cặp số nguyên dương thỏa mãn:
2) Cho x, y, z là các số nguyên đôi một khác nhau. Chứng minh rằng:
chia hết cho 5(x-y)(y-z)(z-x)
Bài 4. (4 điểm) Cho nhọn nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF của cắt nhau tại H
1) Chứng minh
2) Chứng minh DH là tia phân giác của
3) Giả sử . Chứng minh
Bài 5. (2 điểm) Cho tứ giác ABCD có , tia phân giác của cắt mathrm{BD} tại E. Tia phân giác của cắt BD tại F. Chứng minh rằng:
Đề thi HSG Toán 9 – Đề 2
SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ CHÍNH THỨC | KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2020 – 2021 MÔN: TOÁN LỚP 9 – THCS Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 30/3/2021 |
Câu 1. (6 điểm)
1) Cho ba số thực không âm a, b, c thỏa mãn và Tính giá trị của biểu thức
2) Tìm các số thực x, y, z thỏa mãn
Câu 2. (3 điểm)
Tìm các số nguyên x, y thỏa mãn
Câu 3. (3 điểm)
Hỏi có bao nhiêu số nguyên dương nhỏ hơn 2025 nguyên tố cùng nhau với 2021.
Câu 4. (2,5 điểm)
Cho ba số thực dương a, b, c thỏa mãn. Chứng minh
Câu 5. (1,5 điểm)
Cho một hình chữ nhật và 17 đường thẳng phân biệt thỏa mãn: Mỗi đường thẳng chia hình chữ nhật đã cho thành hai tứ giác có tỉ lệ diện tích bằng . Chứng minh rằng trong 17 đường thẳng đã cho tồn tại ít nhất 5 đường thẳng đồng quy tại một điểm.
Câu 6. (4 điểm)
Cho tam giác nhọn ABC ngoại tiếp đường tròn (I) và nội tiếp đường tròn (O). Goi D, E, F lần lượt là giao điểm của ba tia AI, BI, CI với đường tròn (O), biết D khác A, E khác B, F khác C. Gọi M là giao điểm của hai đường thẳng AD và EF, gọi N là giao điểm của hai đường thẳng OD và EF.
1) Chứng minh I là trực tâm của tam giác DEF.
2) Chứng minh
……………………..
Mời các bạn tải File tài liệu để xem thêm 50 đề thi HSG Toán 9
Đăng bởi: THPT Nguyễn Đình Chiểu
Chuyên mục: Tài Liệu Lớp 9